Legends describing a Great Flood are found in the narratives of several world religions, and the biblical account of Noah's Flood is the surviving heir to several versions of the ancient Mesopotamian Flood Myth. Recently, the story of the biblical deluge was connected to the Black Sea, together with the suggestion that the story's pre-Mesopotamian origins might be found in the Pontic basin [Ryan, W.B.F., Pitman, III, W.C., 1998. Noah's Flood: The New Scientific Discoveries About the Event That Changed History. Simon and Schuster, New York]. Based on the significance of this flood epic in the Judeo-Christian tradition, popular interest surged following publication of the idea.Currently, two Great Flood scenarios have been proposed for the Black Sea: (1) an Early Holocene event caused by catastrophic Mediterranean inflow at 7.2 ky BP (initial hypothesis of [Ryan et al., 1997. An abrupt drowning of the Black Sea shelf. Marine Geology 138, 119-126]) or 8.4 ky BP (modified hypothesis of [Ryan et al., 2003. Catastrophic flooding of the Black Sea. Annual Review of Earth and Planetary Science 31, 525-554.); and (2) a Late Pleistocene event brought on by Caspian influx between 16 and 13 ky BP [Chepalyga, A.L., 2003. Late glacial Great Flood in the Black Sea and Caspian Sea. GSA Annual Meeting and Exposition, 2-5 November 2003, Seattle, USA, p. 460]. Both hypotheses claim that the massive inundations of the Black Sea basin and ensuing large-scale environmental changes had a profound impact on prehistoric human societies of the surrounding areas, and both propose that the event formed the basis for the biblical Great Flood legend.This paper attempts to determine whether the preponderance of existing evidence sustains support for these Great Floods in the evolution of the Black Sea. Based upon established geological and paleontological data, it finds that the Late Pleistocene inundation was intense and substantial whereas the Early Holocene sea-level rise was not. Between 16 and 13 ky BP, the Late Neoeuxinian lake (the Late Pleistocene water body in the Pontic basin pre-dating the Black Sea) increased rapidly from ~-14 to -50 m (below the present level of the Black Sea), then rose gradually to ~-20 m by about 11 ky BP. At 11-10 ky BP (the Younger Dryas), it dropped to ~-50 m. When the Black Sea re-connected with the Sea of Marmara at about 9.5 ky BP, inflowing Mediterranean water increased the Black Sea level very gradually up to ~-20 m, and in so doing, it raised the salinity of the basin and brought in the first wave of Mediterranean immigrants. These data indicate no major drawdown of the Black Sea after the Younger Dryas, and they do not provide evidence for any catastrophic flooding of the Black Sea in the Early Holocene.In addition, available archaeological and paleoenvironmental evidence from the Pontic region reveal no recognizable changes in population dynamics between 14 and 6 ky BP that could be linked to an inundation of large magnitude [Dolukhanov, P., Shilik, K., 2006. Environment, sea-level changes, and human migrations in the northern Pontic area during late Pleistocene and Holocene times. In: Yanko-Hombach, V., Gilbert, A.S., Panin, N., Dolukhanov, P.M. (Eds.), The Black Sea Flood Question: Changes in Coastline, Climate, and Human Settlement. Springer, Dordrecht, pp. 297-318; Stanko, V.N., 2006. Fluctuations in the level of the Black Sea and Mesolithic settlement of the northern Pontic area. In: Yanko-Hombach, V., Gilbert, A.S., Panin, N., Dolukhanov, P.M. (Eds.), The Black Sea Flood Question: Changes in Coastline, Climate, and Human Settlement. Springer, Dordrecht, pp. 371-385]. More specifically, Mesolithic and early Neolithic archaeological data in southeastern Europe and Ukraine give no indications of shifts in human subsistence or other behavior at the time of the proposed catastrophic flood in the Early Holocene [Anthony, D., 2006. Pontic-Caspian Mesolithic and Early Neolithic societies at the time of the Black Sea Flood: A small audience and small effects. In: Yanko-Hombach, V., Gilbert, A.S., Panin, N., Dolukhanov, P.M. (Eds.), The Black Sea Flood Question: Changes in Coastline, Climate, and Human Settlement. Springer, Dordrecht, pp. 345-370; Dergachev and Dolukhanov, 2006. The Neolithization of the North Pontic area and the Balkans in the context of the Black Sea Floods. In: Yanko-Hombach, V., Gilbert, A.S., Panin, N., Dolukhanov, P.M. (Eds.), The Black Sea Flood Question: Changes in Coastline, Climate, and Human Settlement. Springer, Dordrecht, pp. 489-514]
From the first millennium B.C. through the 9th-century A.D. Classic Maya collapse, nonurban populations grew exponentially, doubling every 408 years, in the twin-lake (Yaxha-Sacnab) basin that contained the Classic urban center of Yaxha. Pollen data show that forests were essentially cleared by Early Classic time. Sharply accelerated slopewash and colluviation, amplified in the Yaxha subbasin by urban construction, transferred nutrients plus calcareous, silty clay to both lakes. Except for the urban silt, colluvium appearing as lake sediments has a mean total phosphorus concentration close to that of basin soils. From this fact, from abundance and distribution of soil phosphorus, and from continuing post-Maya influxes (80 to 86 milligrams of phosphorus per square meter each year), which have no other apparent source, we conclude that riparian soils are anthrosols and that the mechanism of long-term phosphorus loading in lakes is mass transport of soil. Per capita deliveries of phosphorus match physiological outputs, approximately 0.5 kilogram of phosphorus per capita per year. Smaller apparent deliveries reflect the nonphosphatic composition of urban silt; larger societal outputs, expressing excess phosphorus from deforestation and from food waste and mortuary disposal, are probable but cannot be evaluated from our data. Eutrophication is not demonstrable and was probably impeded, even in less-impacted lakes, by suspended Maya silt. Environmental strain, the product of accelerating agroengineering demand and sequestering of nutrients in colluvium, developed too slowly to act as a servomechanism, damping population growth, at least until Late Classic time
THE BIOGEOGRAPHICAL DISTRIBUTION OF INVERTEBRATE ANIMALS IN FRENCH KARSTS (FIRST PART: THE AQUATIC FAUNA) - This text analyses the bibliographic data in order to draw up a schematic representation of the biogeographical distribution of Invertebrate animals found in French karsts up to 1985. The animal population of these karsts is very varied, especially in the South of France. For many groups, there are obvious links with geological history and paleo-ecology. This text first lists the aquatic groups (from Porifera to Crustacea; the latter is the most varied and numerous in karstic water). It puts forward possible solutions to the problems posed by the ways followed by the ancestors of present-day groups, either of superficial fresh-water origin, or of marine origin during the Tertiary, and whose areas were later modified by the impact of Quaternary glaciations. For the terrestrial groups (cf. Karstologia n° 11), subterranean penetration followed different pathways, among which the Superficial Hypogean Compartment (MSS = Milieu Souterrain Superficiel) plays an obvious role; this shows that many troglobites are not limited, in the underground environment, to just caves and the karst. The Arthropods, and among them the Insects, are of course the most varied and the best known. Their biogeographical distribution reflects the problems of speciation, ecology and endemism, which are discussed in the text.
THE BIOGEOGRAPHICAL DISTRIBUTION OF INVERTEBRATE ANIMALS IN FRENCH KARSTS. SECOND PART THE TERRESTRIAL FAUNA - This text analyses the bibliographic data in order to draw up a schematic representation of the biogeographical distribution of Invertebrate animals found in french karsts up to 1985. The animal population of these karsts is very varied, especially in the south of France. For many groups, there are obvious links with geological history and paleo-ecology. This text first (cf. Karstologia n° 10) lists the aquatic groups (from Porifera to Crustacea; the latter is the most varied and numerous in karstic water). It puts forward possible solutions to the problems posed by the ways followed by the ancestors of present-day groups, either of superficial freshwater origin, or of marine origin during the Tertiary, and whose areas were later modified by the impact of quaternary glaciations. This second part concerns the terrestrial groups, subterranean penetration followed different pathways, among which the Superficial Hypogean Compartment (MSS = Milieu Souterrain Superficiel) plays an obvious role; this shows that many troglobites are not limited in the underground environment, just to caves and karst. The Arthropods, and among them the Insects, are of course the most varied and the best known. Their bio-geographical distribution reflects the problems of speciation, ecology and endemism, which are discussed in the text.