Search in KarstBase
The presence of cavities filled with new minerals in carbonate rocks is a common feature in oil reservoirs and lead-zinc deposits. Since groundwater equilibrates rapidly with carbonates, the presence of dissolution cavities in deep carbonate host rocks is a paradox. Two alternative geochemical processes have been proposed to dissolve carbonates at depth: hydrogen sulfide oxidation to sulfuric acid, and metal sulfide precipitation. With the aid of geochemical modeling we show that mixing two warm solutions saturated with carbonate results in a new solution that dissolves limestone. Variations in the proportion of the end-member fluids can also form a supersaturated mixture and fill the cavity with a new generation of carbonate. Mixing is in general more effective in dissolving carbonates than the aforementioned processes. Moreover, mixing is consistent with the wide set of textures and mineral proportions observed in cavity infillings
Ordovician carbonates near the Wisconsin arch represent the type locality in ancient rocks for the Dorag, or mixing-zone, model for dolomitization. Field, petrographic, and geochemical evidence suggests a genetic link between the pervasive dolomite, trace Mississippi Valley–type (MVT) minerals, and potassium (K)-silicate minerals in these rocks, which preserve a regional hydrothermal signature. Constraints were placed on the conditions of water-rock interaction using fluid-inclusion methods, cathodoluminescence and plane-light petrography, stable isotopic analyses, and organic maturity data. Homogenization temperatures of two-phase aqueous fluid inclusions in dolomite, sphalerite, and quartz range between 65 and 120°C. Freezing data suggest a Na-Ca-Mg-Cl-H2O fluid with salinities between 13 and 28 wt.% NaCl equivalent. The pervasive dolomitization of Paleozoic rocks on and adjacent to the Wisconsin arch was the result of water-rock interaction with dense brines at elevated temperatures, and it was coeval with regional trace MVT mineralization and K-silicate diagenesis. A reevaluation of the Dorag (mixing-zone) model for dolomitization, in conjunction with convincing new petrographic and geochemical evidence, has ruled out the Dorag model as the process responsible for pervasive dolomitization along the Wisconsin arch and adds to the abundant body of literature that casts serious doubt about the viability of the Dorag model in general.
John Luczaj is an assistant professor of earth science in the Department of Natural and Applied Sciences at the University of Wisconsin–Green Bay. He earned his B. S. degree in geology from the University of Wisconsin–Oshkosh. This was followed by an M.S. degree in geology from the University of Kansas. He holds a Ph.D. in geology from Johns Hopkins University in Baltimore, Maryland. His recent interests include the investigation of water-rock interaction in Paleozoic sedimentary rocks in the Michigan Basin and eastern Wisconsin. Previous research activities involve mapping subsurface uranium distributions, reflux dolomitization, and U-Pb dating of Permian Chase Group carbonates in southwestern Kansas.
Hypogenic caves develop by recharge from below, not directly influenced by seepage from the overlying land surface. Several processes of speleogenesis are combined, involving CO2 or H2S produced at depth. If the recharge from depth remains uniform, the growth of selected fissures is prevented, giving rise to maze cave systems with an upward development trend, which is defined as “transverse speleogenesis” [Klimchouk, 2003]. Hypogenic caves are much fewer than epigenic caves (i.e. developed downwards by meteoric water with aggressivity derived from soil). In France, as in the rest of the world, hypogenic caves were poorly recognized until recently because of their lower frequency, subsequent epigenic imprint often hiding the true origin, and the absence of a global conceptual model. However, about a hundred of hypogenic caves have been identified recently in France. The extreme diversity of hypogenic cave patterns and features is due to the variety of geological and topographic settings and types of flow. Thermal caves are a sub-set of hypogenic caves. Active thermal caves are few and small (Mas d’En Caraman, Vallon du Salut). Often, thermal in fluences only occur as point thermal in feeders into epigenic caves (Mescla, Estramar). In addition to the higher temperature, they may be characterized by CO2 (Madeleine) or H2S degassing, by warm water flowing in ceiling channels, or by manganese deposits. The Giant Phreatic Shafts locate along regional active fault lines. They combine all characteristics (thermal, CO2, H2S), due to the fast rising of deep water. The Salins Spring has been explored by scuba diving down to –70 m. Such a hyperkarstification is responsible for the development of the deepest phreatic shafts of the world: pozzo del Merro, Italy (-392 m). Inactive hypogenic caves may be recognized by their specific mineralization or by the presence of large calcite spar. Metallic deposits are due to the rising of deep waters that are warm, aggressive, and low in oxidation potential. Mixing with meteoric water generates Mississippi Valley Type (MVT) sulfidic ores. Iron deposits as massive bodies (Lagnes) or onto microbial media (Iboussières, Malacoste) making specific facies, such as “black tubes”, iron flakes, and iron pool fingers. Other frequent minerals are Mn oxides and Pb sulfur. In such low thermal conditions, calcite deposits occur as large spar in geodes or as passage linings. Other inactive hypogenic caves may also be recognized by characteristic patterns, such as mazes. The relatively constant recharge into confined karst aquifers suppresses fissure competition, so they enlarge at similar rates, producing a maze pattern. In horizontal beds, mazes extend centrifugally around the upwelling feeder. The juxtaposition of multiple discrete vertical feeders produces extended horizontal mazes. In gently tilted structures, 2D mazes extend below aquitards, or along bedding or more porous beds (Saint-Sébastien). In thick folded limestone the rising hypogenic flow alternatively follows joints and bedding planes, producing a 3D maze cave in a stair case pattern (Pigette). Isolated chambers are large cupola-like chambers fed by thermal slots. Thermal convection of air in a CO2-rich atmosphere causes condensation-corrosion that quickly produces voids above the water table (Champignons Cave). Sulfuric acid caves with replacement gypsum are produced by H2S degassing in the cave atmosphere. H2S oxidizes to H2SO4, which corrodes the carbonate rock and replaces it with gypsum. The strongest corrosion occurs above the water table, where sulfide degassing and thermal convection produce strong condensation-corrosion. Caves develop head ward from springs and from thermo-sulfuric slots upward (Chevalley-Serpents System). The low-gradient main drains record base level positions and even the slightest stages of water-table lowering (Chat Cave). Hypogenic speleogenesis provides better understanding of the distribution of karst voids responsible for subsidence hazards and the emplacement of minerals and hydrocarbons.
Hypogenic caves develop by recharge from below, not directly influenced by seepage from the over lying land surface. Several processes of speleogenesis are combined, involving CO2 or H2S produced at depth. If the recharge from depth remains uniform, the growth of selected fissures is prevented, giving rise to maze cave systems with an upward development trend, which is defined as “transverse speleogenesis” [Klimchouk, 2003]. Hypogenic caves are much fewer than epigenic caves (i.e. developed downwards by meteoric water with aggressivity derived from soil). In France, as in the rest of the world, hypogenic caves were poorly recognized until recently because of their lower frequency, subsequent epigenic imprint of tenhiding the true origin, and the absence of a global conceptual model. However, about a hundred of hypogenic caves have been identified recently in France. The extreme diversity of hypogenic cave patterns and features is due to the variety of geological and topographic settings and types of flow. Thermal caves are a sub-set of hypogenic caves. Active thermal caves are few and small (Mas d’En Cara man, Vallondu Salut). Often, thermal in fluences only occur as point thermal infeeders into epigenic caves (Mescla, Estra mar). In addition to the higher temperature, they may be characterized by CO2 (Madeleine) or H2S degassing, by warm water flowing in ceiling channels, or by manganese de posits. The Giant Phreatic Shafts locate along regional active faul tlines. They combine all characteristics (thermal, CO2, H2S), due to the fast rising of deep water. The Salins Spring has been explored by scuba diving down to –70 m. Such a hyperkars tification is responsible for the development of the deepest phreatic shafts of the world: pozzo del Merro, Italy (-392 m). Inactive hypogenic caves may be recognized by their specific mineralization or by the presence of large calcite spar. Metallic deposits are due to the rising of deep waters that are warm, aggressive, and low in oxidation potential. Mixing with meteoric water generates Mississippi Valley Type (MVT) sulfidicores. Iron deposits as massive bodies (Lagnes) or ontomicrobial media (Ibous sières, Malacoste) making specific facies, such as “black tubes”, iron flakes, and iron pool fingers. Other frequent minerals are Mn oxides and Pb sulfur. In such low thermal conditions, calcite deposits occur as large spar in geodes or as passage linings. Other inactive hypogenic caves may also be recognized by characteristic patterns, such as mazes. The relatively constant recharge into confined karst aquifers suppres ses fissure competition, so they enlarge at similar rates, producing a maze pattern. In horizontal beds, mazes extend centrifugally around the upwelling feeder. The juxtaposition of multiple discrete vertical feeders produces extended horizontal mazes. In gently tilted structures, 2D mazes extend below aquitards, or along bedding or more porous beds (Saint-Sé bastien). In thick folded limestone the rising hypogenic flow alternatively follows joints and bedding planes, pro ducing a 3D maze cave in a stair case pattern (Pigette). Isolated chambers are large cupola-like chambers fed by thermal slots. Thermal convection of air in a CO2-rich atmosphere causes condensation-corrosion that quickly produces voids above the water table (Champignons Cave). Sulfuric acid caves with replacement gypsum are produced by H2S degassing in the cave atmosphere. H2S oxidizes to H2SO4, which corrodes the carbonate rock and replaces it with gypsum. The strongest corrosion occurs above the water table, where sulfide degassing and thermal convection produce strong condensation-corrosion. Caves develop headward from springs and from thermo-sulfuric slots upward (Chevalley-Serpents System). The low-gradient main drains record base-level positions and even the slightest stages of water-table lowering (Chat Cave). Hypogenic speleogenesis provides better understanding of the distribution of karst voids responsible for subsidence hazards and the emplace ment of minerals and hydrocarbons.
The Central and Eastern Taurides contain numerous carbonate-hosted Pb-Zn deposits, mainly in Devonian and Permian dolomitized reefal-stramatolitic limestones, and in massive Jurassic limestones. We present and compare new fluid inclusion and isotopic data from these ore deposits, and propose for the first time a Mississippi Valley-type (MVT) mode of origin for them. Fluid inclusion studies reveal that the ore fluids were highly saline (13-26% NaCl equiv.), chloride-rich (CaCl2) brines, and have average homogenization temperatures of 112°C, 174.5°C, and 211°C for the Celal Dag, Delikkaya, and Ayrakl deposits, respectively. Furthermore, the ?34S values of carbonate-hosted Pb-Zn deposits in the Central and Eastern Taurides vary between -5.4‰ and +13.70‰. This indicates a possible source of sulphur from both organic compounds and crustal materials. In contrast, stable sulphur isotope data (average ?34S -0.15‰) for the Cadrkaya deposit, which is related to a late Eocene-Oligocene (?) granodioritic intrusion, indicates a magmatic source. The lead isotope ratios of galena for all investigated deposits are heterogeneous. In particular, with the exception of the Sucat district, all deposits in the Eastern (Delikkaya, Ayrakl, Denizovas, Cadrkaya) and Central (Katranbasi, Kucuksu) Taurides have high radiogenic lead isotope values (206Pb/204Pb between 19.058 and 18.622; 207Pb/204Pb between 16.058 and 15.568; and 208Pb/204Pb between 39.869 and 38.748), typical of the upper continental crust and orogenic belts. Fluid inclusion, stable sulphur, and radiogenic lead isotope studies indicate that carbonate-hosted metal deposits in the Eastern (except for the Cadrkaya deposit) and the Central Taurides are similar to MVT Pb-Zn deposits described elsewhere. The primary MVT deposits are associated with the Late Cretaceous-Palaeocene closure of the Tethyan Ocean, and formed during the transition from an extensional to a compressional regime. Palaeogene nappes that typically limit the exposure of ore bodies indicate a pre-Palaeocene age of ore formation. Host rock lithology, ore mineralogy, fluid inclusion, and sulphur + lead isotope data indicate that the metals were most probably leached from a crustal source such as clastic rocks or a crystalline massif, and transported by chloride-rich hydrothermal solutions to the site of deposition. Localization of the ore deposits on autochthonous basement highs indicates long-term basinal fluid migration, characteristic of MVT depositional processes. The primary MVT ores were oxidized in the Miocene, resulting in deposition of Zn-carbonate and Pb-sulphate-carbonate during karstification. The ores underwent multiple cycles of oxidation and, in places, were re-deposited to form clastic deposits. Modified deposits resemble the 'wall-rock replacement' and the 'residual and karst fill' of non-sulphide zinc deposits and are predominantly composed of smithsonite
Recognition and understanding of the important role of sulfur redox processes in developing karst has grown over the last25 years with the discovery of remarkable sulfur-rich caves worldwide and advances in geomicrobiology. Recent work hasshown that microbes interact with hydrocarbons, calcium sulfate bedrock, magmatic fluids, and sulfide ore minerals toreduce gypsum/anhydrite to calcite, produce hydrogen sulfide and sulfuric acid, convert limestone to gypsum, in crease porosity in carbonate bedrocks, precipitate massive sulfur, and deposit Mississippi Valley-Type (MVT) ores. These processesare most active in the shallow phreatic and vadose-phreatic subsurface, where transitions between aerobic and anaerobicconditions exist.
Uplifted unconfined and adjoining confined continental carbonate aquifers contain thermal water with marginal thermal springs as decisive discharge features connected to tectonic contact between the unconfined and confined part of the system. These areas are characterised by positive thermal anomaly, particular mineral precipitates and phre-atophyte vegetation. These systems are important not only as sources of thermal water but the confined parts of the system can serve as hydrocarbon reservoirs, moreover Mississippi Valley Type (MVT) ore deposits can also be connected to such environ-ments. Hypogenic speleogenesis can be active at such marginal discharge zones of groundwater due to the direct corrosive effect of deep originated fluids. These different processes are known from the literature however their relationships have not been revealed comprehensively. The application of regional groundwater flow system theory and evaluation can give a chance to understand the common origin of these different processes, which is moving groundwater. The Buda Thermal Karst offers an exception-al natural laboratory where groundwater flow systems and their effect on rock matrix and the environment can be examined and proved directly. Moreover as new discharge phenomenon a karst corrosive biofilm was recognized here. The presentation displays the most important conclusions which can be generalized for areas with similar hydro-geological settings. The research is supported by the NK 101356 OTKA research grant