Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_right.php on line 7
KarstBase a bibliography database in karst and cave science.
Featured articles from Cave & Karst Science Journals
Characterization of minothems at Libiola (NW Italy): morphological, mineralogical, and geochemical study, Carbone Cristina; Dinelli Enrico; De Waele Jo
Chemistry and Karst, White, William B.
The karst paradigm: changes, trends and perspectives, Klimchouk, Alexander
Long-term erosion rate measurements in gypsum caves of Sorbas (SE Spain) by the Micro-Erosion Meter method, Sanna, Laura; De Waele, Jo; Calaforra, José Maria; Forti, Paolo
The use of damaged speleothems and in situ fault displacement monitoring to characterise active tectonic structures: an example from Zapadni Cave, Czech Republic , Briestensky, Milos; Stemberk, Josef; Rowberry, Matt D.;
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
Search in KarstBase
Your search for radon (Keyword) returned 72 results for the whole karstbase:
Showing 1 to 15 of 72
![]() |
![]() |
Radon concentrations range from < 185 to 3,515 Bq m-3 throughout Lechuguilla Cave, Carlsbad Caverns National Park, New Mexico. Concentrations in the entrance passages and areas immediately adjacent to these passages are controlled by outside air temperature and barometric pressure, similar to other Type 2 caves. Most of the cave is developed in three geographic branches beneath the entrance passages; these areas maintain Rn levels independent of surface effects, an indication that Rn levels in deep, complex caves or mines cannot be simply estimated by outside atmospheric parameters. These deeper, more isolated areas are subject to convective ventilation driven by temperature differences along the 477-m vertical extent of the cave. Radon concentrations are used to delineate six microclimate zones (air circulation cells) throughout the cave in conjunction with observed airflow data. Suspected surface connections contribute fresh air to remote cave areas demonstrated by anomalous Rn lows surrounded by higher values, the presence of mammalian skeletal remains, CO2 concentrations and temperatures lower than the cave mean, and associated surficial karst features
222Rn gas concentration was measured in thermal waters as well as in mineral springs and in some aqueducts of Veneto. Places for collection of samples where chosen from different hydro-geological areas: thermal, volcanic, resurgence, middle areas, from the alluvial cone of the Adige river and from the karst formations of Montorio. As for mineral waters, measurements were carried out in most of the industrial springs of this region. Large use of these waters among the people of Veneto makes this investigation more important than the 222Rn levels observed would suggest. The analysis of some local aqueducts allowed us to complete studies of the sources and distribution of drinking water in Veneto
Subterranean networks of cavities and fissures can present circulatory systems facilitating convective and advective transport of radon-bearing air. Evidence points to aerostatic pressure differentials being the principal driving force for subterranean transport of radon in some hilly limestone terrains of the southern Appalachians; differences between the underground and outside air temperatures, and the concomitant differences in air density, appear to be the dominant factor in producing the differences in aerostatic pressure. Examples are presented of houses experiencing elevated indoor levels as a consequence of being built on top of and apparently communicating with such subterranean systems. The location of a house near the upper or lower end of a subterranean circulatory system can result in amplification of indoor radon levels in winter or summer, respectively. These phenomena have been studied in and around houses located in the hilly karst areas of Huntsville, AL, and Oak Ridge, TN
Factors governing the accumulation of radon in caves are discussed. Preliminary measurements in some Australian caves show levels which vary by factors of 4 (seasonal) and 75 (diurnal), with the upper levels approaching recommended maximum exposure levels for some tourist cave guides.
Results 1 to 15 of 72
![]() |
![]() |
You probably didn't submit anything to search for