MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology

Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 5
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That subsidence/head-decline ratio is the ratio between land subsidence and hydraulic head decline in the coarse-grained beds of the compacting aquifer system [21].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 7
What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for traps (Keyword) returned 23 results for the whole karstbase:
Showing 1 to 15 of 23
Drought and Murray Cave, Cooleman Plain, 1969,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Jennings J. N. , Nankivell I. , Pratt C. , Curtis R. , Mendum J.

The drought culminating in 1967-68 opened water-traps in Murray Cave, thus permitting the re-exploration and survey in January 1968, of a further 1,000 feet of the main passage. Previous explorations, of which oral tradition persisted, are known to have taken place in 1902-3 and some details of the early visitors are presented. The characteristics of the extension are predominantly shallow phreatic in nature and about half of it episodically functioning in this way at the present time; the water-traps along it are inverted siphons in the strict sense and located at the sharpest changes in cave direction. The exploration limit consists of a rockfall beneath a doline, which appears, therefore, to be at least in part a collapse doline. Beneath two other dolines the cave has no sign of collapse, though tall avens reach towards the surface; these dolines are due to surface solution only. The forward part of the cave is overlain by a short, steep dry valley; the relationship between the two remains problematic but there is good reason not to regard the dry valley as the determinant of the cave's location. The evidence is now stronger for an earlier hypothesis that the cave was formerly the outflow cave of nearby River Cave, a perennially active stream cave. It also seems likely that the episodic activity of Murray Cave is due to flood overflow from River Cave. The hydrological regime of the cave is compared with precipitation records of the nearby stations. The episodic flow through the cave does not require an abnormally wet winter; it can follow fairly quickly after complete emptying of the water-traps and approaches an annual event. Draining of the water-traps is a much less frequent event, but whether a series of low rainfall years is necessary, or a single pronouncedly dry year is sufficient to achieve this, cannot be determined from available data. On either count, it seems probable that the cave opened up two or more times between the known occasions of 1902-3 and 1968 in the period 1909-53 when the cave was visited infrequently.

The migration of cavernicolous Trichoptera. Evidence from light traps., 1972,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Bouvet Yvette
The Trichoptera from the group "Stenophylax" are frequent in caves. Until now, following Jeannel's thought (1926), most authors believed that these animals were found in caves by hazard and were doomed to perish in them. With the use of a light trap it is now demonstrated that cavernicolous Trichoptera not only stay in caves during the entire summer, but also that during autumn (September-Oktober) they leave the caves to lay their eggs in the nearby rivers.

The migration of cavernicolous Trichoptera. Evidence from light traps., 1972,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Bouvet Yvette
The Trichoptera from the group "Stenophylax" are frequent in caves. Until now, following Jeannel's thought (1926), most authors believed that these animals were found in caves by hazard and were doomed to perish in them. With the use of a light trap it is now demonstrated that cavernicolous Trichoptera not only stay in caves during the entire summer, but also that during autumn (September-Oktober) they leave the caves to lay their eggs in the nearby rivers.

A population study of the cave beetle Ptomaphagus loedingi (Coleoptera; Leiodidae; Catopinae)., 1975,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Peck Stewart B.
Baited pitfall traps were used in Barclay Cave, Alabama, in 1965 to study a blind Ptomaphagus beetle population. A 40m2 area in the cave yielded 95% of the 897 adult and larval beetles trapped in the cave at 9 stations. This represented a population density of about 13 beetles/m2. Tests of different baits showed decayed meat to be the most attractive. Adults were most abundant in mid-August when substrate conditions were moist, were reproductively active, and were not newly emerged from pupal cells. Larvae were most abundant in late August. The population was studied by mark-recapture methods for 8 years after the pitfall trapping, and it was judged to have recovered to former densities after about 6 to 8 years. The use of traps which kill cave invertebrates is not encouraged for most future cave ecology studies. Population densities of beetles at baits in Cold Spring Cave were found to be 139 adults/m2 in 1968, and to much lower in three later years.

Yates and other Guadalupian (Kazanian) oil fields, U. S. Permian Basin, 1990,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Craig Dh,
More than 150 oil and gas fields in west Texas and southeast New Mexico produce from dolomites of Late Permian (Guadalupian [Kazanian]) age. A majority of these fields are situated on platforms or shelves and produce from gentle anticlines or stratigraphic traps sealed beneath a thick sequence of Late Permian evaporites. Many of the productive anticlinal structures are elongate parallel to the strike of depositional facies, are asymmetrical normal to facies strike, and have flank dips of no more than 6{degrees}. They appear to be related primarily to differential compaction over and around bars of skeletal grainstone and packstone. Where the trapping is stratigraphic, it is due to the presence of tight mudstones and wackestones and to secondary cementation by anhydrite and gypsum. The larger of the fields produce from San Andres-Grayburg shelf and shelf margin dolomites. Cumulative production from these fields amounts to more than 12 billion bbl (1.9 x 109 m3) of oil, which is approximately two-thirds of the oil produced from Palaeozoic rocks in the Permian Basin. Eighteen of the fields have produced in the range from 100 million to 1.7 billion bbl (16-271 x 106 m3). Among these large fields is Yates which, since its discovery in October 1926, has produced almost 1.2 billion bbl (192 x 106 m3) out of an estimated original oil-in-place of 4 billion bbl (638 x 106 m3). Flow potentials of 5000 to 20 000 bbl (800 to 3200 m3) per day were not unusual for early Yates wells. The exceptional storage and flow characteristics of the Yates reservoir can be explained in terms of the combined effects of several geologic factors: (1) a vast system of well interconnected pores, including a network of fractures and small caves; (2) oil storage lithologies dominated by porous and permeable bioclastic dolograinstones and dolopackstones; (3) a thick, upper seal of anhydrite and compact dolomite; (4) virtual freedom from the anhydrite cements that occlude much porosity in other fields which are stratigraphic analogues of Yates; (5) unusual structural prominence, which favourably affected diagenetic development of the reservoir and made the field a focus for large volumes of migrating primary and secondary oil; (6) early reservoir pressures considerably above the minimum required to cause wells to flow to the surface, probably related to pressures in a tributary regional aquifer

Karst in Enclosing Rocks of Kimberlite Diatremes on the Siberian Platform , 1998,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Filippov, Andrej G.

Karst is widely developed in enclosing carbonate rocks of kimberlite diatremes in Yakutia. The Lower Silurian, and Lower and Middle Ordovician marine carbonate and carbonate-terrigenous rocks were exposed to karstification. The age of the forms is Middle and Upper Carboniferous, Cretaceous-Paleogene, Neogene-Quaternary and Quaternary. Karst forms are found on different elements of macro-relief, such as the top part of high plateaux armoured by traps, high plateau slopes, low carbonate plateaux. With respect to elements of meso-relief, karst has developed in watersheds, valley slopes, and under the bottoms of valleys.

Paleokarsts in late Precambrian and Ordovician carbonates, Kalpin-Shaya uplift zone, Tarim basin, China, 1999,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Cao Hs, Yang Jd, Wang Dn,
The reservoir properties in the Kalpin-Shaya uplift zone, Tarim basin, are a common concern with regards to petroleum exploration and reservoir evaluation alike. Dissolution and paleokarst have a positive impact on the porosity as well as the storage capacity of carbonate reservoirs because the secondary porosity related to dissolution and paleokarst serves as excellent traps for migrating hydrocarbons. In order to evaluate the reservoir characteristics reasonably in the late Precambrian and Ordovician carbonate rocks, the secondary porosity, which was produced by dissolution and paleokarstification in late diagenetic stage. should be studied because the primary pores were mostly destroyed during the early-middle diagenesis due to serious compaction and multi-cementation. Carbonate rocks ate among the most important collectors of oil and gas accumulations in the world Important oil and gas reservoirs in paleokarst-containing carbonate rocks are known worldwide because micropores and megapores, such as solution openings, solution fissures, funnels, sinkholes. and caves, serve as the fundamentally important secondary porosity in those rocks. Several wells revealed that the Kalpin-Shaya region is a prospective target for oil and gas exploration. The reservoir carbonates of the Kalpin-Shaya uplift zone in the northern Tarim include dolomites and limestones. The best dolomite reservoirs are in the late Precambrian Qigebulake Formation (Z(2)(2)), the lower Qiulitage Group (is an element of(2-3)), the upper Qiulitage Group (O-1(1)), smd the Xiaoerbulake Formation (is an element of(1)), whereas limestone reservoirs are in the middle-upper formations of the upper Qiulitage Group (O-1(2-3)). On the basis of the study of petrology, paleontology, and stratigraphy from field work and well core data, the pore spaces within the Precambrian and Ordovician carbonate reservoirs are studied with the aim of proving that all secondary pores are controlled by dissolution and paleokarst

Basement lithology and its control on sedimentation, trap formation and hydrocarbon migration, Widuri-Intan oilfields, SE Sumatra, 1999,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Tonkin P. C. , Himawan R. ,
The Widuri-lntan oilfields produce from late Oligocene sandstones of the Talang Akar Formation, which were deposited in a fluid-to-deltaic setting on the NW side of the Asri Basin, offshore SE Sumatra. The Asri Basin is of rift origin and formed during the early Oligocene, with its axis oriented in a NE-SW direction. Approximately 310 million brls of oil have been produced from the fields within the 12-by-12 mile (20-by-20 km) study area. The oil occurs in a series of structural and stratigraphic traps within slightly sinuous to meandering channel sandstone bodies. The reservoir sequence (sandstone interbedded with minor mudstone and coal) overlies basement rocks, which are predominantly Cretaceous in age. Forty-nine well penetrations have shown that the basement is composed of one of four lithologies: IB hornblende granodiorite; (2) metamorphic rocks, mainly mica schist; (3) plugs of metabasalt and related volcanic rocks; or (4) dolomitic limestone. A combination of drill cuttings, sidewall and conventional cores and FMS/FMI images has been used to identify and map the distribution of basement rock type. The basement was subjected to exposure and deep weathering prior to the formation of the Asri Basin, as evidenced by the zones of surface alteration encountered during drilling. The basement palaeotopography had a strong influence on the later distribution of major fluvial channels and sand pinch-outs. Several major faults appear to be controlled by basement lithology, especially at the boundaries of granodiorite and metabasalt intrusives. An important shear zone, oriented NW-SE, appears to have offset the basement between the main Widuri and Intan fields, and was subsequently the site of silicification of the mica schists in the basement. The Lidya field is situated where the reservoir pinches out onto eroded areas of basement silicification along this shear zone. Palaeocurrents in the upper 34-2 and 34-1 channel sandstones in the Widuri field were controlled by the orientation of this basement feature . Drape and compaction ofOligocene Talang Akar Formation sediments over eroded volcanic plugs have defined or enhanced a number of structural/stratigraphic plays, including the Widuri and Chesy fields. From seismic and well evidence, the reservoir sequence at the Indri field is underlain by dolomitic limestone and exhibits a series of unusual karst-related sinkhole and collapse structures. These are circular to slightly elliptical in shape, and extend from basement level to over 900 ft vertically into the overlying Talang Akar Formation

Role of cave information in environmental site characterization,, 1999,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Jancin M.
For consultants concerned with developing site-specific conceptual models for flow and transport in karst, cave information can be worth accessingAt the scale of the basin, caves often display patterns that correlate with both the flow and recharge characteristics of their aquifersCharacterization of overall basin hydrology bolsters predictions and monitoring recommendations which address the siteAlthough the presence of caves beneath or near sites is rare, site-based information such as water-table maps (under both natural and pumping conditions), well water-level fluctuations, well turbidity observations, borehole-void yields during drilling, and dye-trace results, are potentially useful in defining conduit-flow boundaries to diffuse-flow blocksThe appropriate choice of dye-tracer methods should acknowledge whether most site conduits (or borehole voids, or even caves) are within the epikarst, the vadose zone, the phreatic zone, or the oscillation zoneFor inferences on site flow directions, it is useful to compare the directional frequencies of cave passages and joints, faults, and photolinears in the areaThere is evidence that where caves are well developed, there tends to be a low correlation between photolinear locations and relatively high well yieldsLNAPL migration will be retarded where main conduits are well beneath the water table, but an extensive overlying system of saturated epikarstic pores serve as trapsKarst with high seasonal or storm variations in water level will tend to repeatedly remobilize LNAPLsGiven sufficient volume, DNAPLs can penetrate vertically integrated networks of pores, fractures, or solution conduits to great depthHowever, where such pathway networks are lie above relatively tight lithologies at shallow depth, and are not sediment filled, lateral movement can greatly exceed vertical movementCharacterization of the 3-D nature of pores and pathways is an important element in understanding the migration of free product, and therefore in understanding the evolution of associated aqueous plumes

Sulfuric acid, hypogene karst in the Guadalupe mountains of New Mexico and West Texas, USA, 2000,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Hill C. A.
Carlsbad Cavern, Lechuguilla Cave, and other caves in the Guadalupe Mountains are probably the worlds best examples of karst formed by sulfuric acid in a hypogene setting. Four episodes of karstification have occurred in these mountains from Late Permian time to the present, the sulfuric acid episode being the last of these four. Sulfuric acid karst can be recognized by its large passage size, ramiform-spongework pattern, horizontal passages connected by deep pits and fissures, location beneath structural and stratigraphic traps, gypsum and native sulfur deposits, and the sulfuric-acid/H2S indicator minerals endellite, alunite, natroalunite, and tyuyamunite. Guadalupe caves formed in a diffuse-flow aquifer regime where caves may have acted as mixing chambers for hypogene-derived H2S and meteoric-derived fresh water. How cave hydrology has been related to regional hydrology during the late-Tertiary to present is poorly understood. Sulfuric acid karst is an integral part of H2S-degassing hydrocarbon basins which also can contain economic sulfur and Mississippi Valley-type ore deposits.

The sequence stratigraphy, sedimentology, and economic importance of evaporite-carbonate transitions: a review, 2001,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Sarg J. F. ,
World-class hydrocarbon accumulations occur in many ancient evaporite-related basins. Seals and traps of such accumulations are, in many cases, controlled by the stratigraphic distribution of carbonate-evaporite facies transitions. Evaporites may occur in each of the systems tracts within depositional sequences. Thick evaporite successions are best developed during sea level lowstands due to evaporative drawdown. Type 1 lowstand evaporite systems are characterized by thick wedges that fill basin centers, and onlap basin margins. Very thick successions (i.e. saline giants) represent 2nd-order supersequence set (20-50 m.y.) lowstand systems that cap basin fills, and provide the ultimate top seals for the hydrocarbons contained within such basins.Where slope carbonate buildups occur, lowstand evaporites that onlap and overlap these buildups show a lateral facies mosaic directly related to the paleo-relief of the buildups. This facies mosaic, as exemplified in the Silurian of the Michigan basin, ranges from nodular mosaic anhydrite of supratidal sabkha origin deposited over the crests of the buildups, to downslope subaqueous facies of bedded massive/mosaic anhydrite and allochthonous dolomite-anhydrite breccias. Facies transitions near the updip onlap edges of evaporite wedges can provide lateral seals to hydrocarbons. Porous dolomites at the updip edges of lowstand evaporites will trap hydrocarbons where they onlap nonporous platform slope deposits. The Desert Creek Member of the Paradox Formation illustrates this transition. On the margins of the giant Aneth oil field in southeastern Utah, separate downdip oil pools have accumulated where dolomudstones and dolowackestones with microcrystalline porosity onlap the underlying highstand platform slope.Where lowstand carbonate units exist in arid basins, the updip facies change from carbonates to evaporite-rich facies can also provide traps for hydrocarbons. The change from porous dolomites composed of high-energy, shallow water grainstones and packstones to nonporous evaporitic lagoonal dolomite and sabkha anhydrite occurs in the Upper Permian San Andres/Grayburg sequences of the Permian basin. This facies change provides the trap for secondary oil pools on the basinward flanks of fields that are productive from highstand facies identical to the lowstand dolograinstones. Type 2 lowstand systems, like the Smackover Limestone of the Gulf of Mexico, show a similar relationship. Commonly, these evaporite systems are a facies mosaic of salina and sabkha evaporites admixed with wadi siliciclastics. They overlie and seal highstand carbonate platforms containing reservoir facies of shoalwater nonskeletal and skeletal grainstones. Further basinward these evaporites change facies into similar porous platform facies, and contain separate hydrocarbon traps.Transgressions in arid settings over underfilled platforms (e.g. Zechstein (Permian) of Europe; Ferry Lake Anhydrite (Cretaceous), Gulf of Mexico) can result in deposition of alternating cyclic carbonates and evaporites in broad, shallow subaqueous hypersaline environments. Evaporites include bedded and palmate gypsum layers. Mudstones and wackestones are deposited in mesosaline, shallow subtidal to low intertidal environments during periodic flooding of the platform interior.Highstand systems tracts are characterized by thick successions of m-scale, brining upward parasequences in platform interior settings. The Seven Rivers Formation (Guadalupian) of the Permian basin typifies this transition. An intertonguing of carbonate and sulfates is interpreted to occur in a broad, shallow subaqueous hypersaline shelf lagoon behind the main restricting shelf-edge carbonate complex. Underlying paleodepositional highs appear to control the position of the initial facies transition. Periodic flooding of the shelf interior results in widespread carbonate deposition comprised of mesosaline, skeletal-poor peloid dolowackestones/mudstones. Progressive restriction due to active carbonate deposition and/or an environment of net evaporation causes brining upward and deposition of lagoonal gypsum. Condensed sections of organic-rich black lime mudstones occur in basinal areas seaward of the transgressive and highstand carbonate platforms and have sourced significant quantities of hydrocarbons

Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Culver David C. , Sket Boris

In 1999, we described the twenty caves and karst wells that have 20 or more species of obligate cave organisms living in them. Among these caves five are developed as tourist caves &emdash; Postojna-Planina Cave System (Slovenia), Baget - Sainte Catherine System (France), Shelta Cave (Alabama, USA), Mammoth Cave (Kentucky, USA), and Vjetrenica Cave (Bosnia & Herzegovina). For these and other tourist caves, there is a special responsibility to protect this fauna. The very fact that caves with large numbers of visitors and with modifications to the cave can have high species diversity shows that the two are not incompatible. Many of the standard sampling techniques, may work in some caves only; they are of restricted use. Pollution may be either directly detrimental to the cave fauna or may enable surface species to outcompete the endemic cave fauna. Therefore, changes in the quantity of fauna have to be monitored as well as changes in its taxonomic composition. In the case of new tourist installations, the local cave and surface fauna has to be investigated prior to any modifications. For biological monitoring, we recommend one of the following: 1. minimum-time census, rather than minimum-area census; 2. baiting in both terrestrial and aquatic habitats; 3. pitfall traps (baited or unbaited) in terrestrial habitats.

Ice caves as an indicator of winter climate evolution: a case study from the Jura Mountains, 2005,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Luetscher Marc, Jeannin Pierre Yves, Haeberli Wilfried,
Subsurface ice fillings were first described in the Jura Mountains at the end of the sixteenth century. In order to assess the impact of climate change on low-altitude cave ice a detailed inventory has been drawn up and more than 50 objects have been identified. Comparisons between older cave maps, photographic documents and present-day observations outline a negative trend in ice mass balances, a trend that increased at the end of the 1980s. As most of these ice caves act as cold air traps, this negative mass balance is mainly attributed to higher winter temperatures and to reduced snow precipitation at low altitudes. The equilibrium line altitude of ice caves is believed to have increased several hundred metres between AD 1978 and 2004. Photographic comparisons and proxy records in some of the caves studied provide evidence of a rapid mass turnover. Ice ages range between less than a few decades and a millennium. Climatic records in these ice fillings will therefore present only short time series compared with other cave sediments. However, indications of former ice fillings have been found in different caves of the Jura Mountains and outline their potential role as palaeoclimatic markers

Australian Zn-Pb-Ag Ore-Forming Systems: A Review and Analysis, 2006,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Huston David L. , Stevens Barney, Southgate Peter N. , Muhling Peter, Wyborn Lesley,
Zn-Pb-Ag mineral deposits are the products of hydrothermal ore-forming systems, which are restricted in time and space. In Australia, these deposits formed during three main periods at ~2.95, 1.69 to 1.58, and 0.50 to 0.35 Ga. The 1.69 to 1.58 Ga event, which accounts for over 65 percent of Australia's Zn, was triggered by accretion and rifting along the southern margin of Rodinia. Over 93 percent of Australia's Zn-Pb-Ag resources were produced by four ore-forming system types: Mount Isa (56% of Zn), Broken Hill (19%), volcanic-hosted massive sulfide (VHMS; 12%), and Mississippi Valley (8%). Moreover, just 4 percent of Australia's land mass produced over 80 percent of its Zn. The four main types of ore-forming systems can be divided into two 'clans,' based on fluid composition, temperature, and redox state. The Broken Hill- and VHMS-type deposits formed from high-temperature (>200{degrees}C) reduced fluids, whereas the Mount Isa- and Mississippi Valley-type deposits formed from low-temperature (<200{degrees}C), H2S-poor, and/or oxidized fluids. The tectonic setting and composition of the basins that host the ore-forming systems determine these fluid compositions and, therefore, the mineralization style. Basins that produce higher temperature fluids form in active tectonic environments, generally rifts, where high heat flow produced by magmatism drives convective fluid circulation. These basins are dominated by immature siliciclastic and volcanic rocks with a high overall abundance of Fe2. The high temperature of the convective fluids combined with the abundance of Fe2 in the basin allow inorganic sulfate reduction and leaching of sulfide from the country rock, producing reduced, H2S-rich fluids. Basins that produce low-temperature fluids are tectonically less active, generally intracratonic, extensional basins dominated by carbonate and variably mature siliciclastic facies with a relatively low Fe2 abundance. In these basins, sediment maturity depends on the paleogeography and stratigraphic position in an accommodation cycle. Volcanic units, if present, occur in the basal parts of the basins. Because these basins have relatively low heat flow, convective fluid flow is less important, and fluid migration is dominated by expulsion of basinal brines in response to local and/or regional tectonic events. Low temperatures and the lack of Fe2 prevent in-organic sulfate reduction during regional fluid flow, producing H2S-poor fluids that are commonly oxidized (i.e., {sum}SO4 > {sum}H2S). Fluid flow in the two basin types produces contrasting regional alteration systems. High-temperature fluid-rock reactions in siliciclastic-volcanic-dominated basins produce semiconformable albite-hematite-epidote assemblages, but low-temperature reactions in carbonate-siliciclastic-dominated basins produce regional K-feldspar-hematite assemblages. The difference in feldspar mineralogy is mostly a function of temperature. In both basin types, regional alteration zones have lost, and probably were the source of, Zn and Pb. The contrasting fluid types require different depositional mechanisms and traps to accumulate metals. The higher temperature, reduced VHMS- and Broken Hill-type fluids deposit metals as a consequence of mixing with cold seawater. Mineralization occurs at or near the sea floor, with trapping efficiencies enhanced by sub-surface replacement or deposition in a brine pool. In contrast, the low-temperature, oxidized Mount Isa- and Mississippi Valley-type fluids precipitate metals through thermochemical sulfate reduction facilitated by hydrocarbons or organic matter. This process can occur at depth in the rock pile, for instance in failed petroleum traps, or just below the sea floor in pyritic, organic-rich muds

Paleokarst reservoirs and gas accumulation in the Jingbian field, Ordos Basin, 2008,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Li J. , Zhang W. , Luo X. , Hu G.

The Jingbian gas field in central Ordos Basin, with a proven initial in place gas reserve of approximately 11 trillion cubic meters, is the largest paleokarst carbonate gas field in China. Paleokarst in Ordovician strata of central Ordos most commonly occurs in the paleoweathering surface of the O1m5 member of the Majiagou Formation. The karst intervals are generally proximal to the sub-Upper Paleozoic unconformity; however, dissolution features in strata well below that exposure surface are possibly related to intra-Majiagou Formation unconformities. The quality of gas reservoirs are initially controlled by sedimentary facies, with anhydrite-bearing dolomite flat facies being the most favorable zones for dissolution and dolomitization to form karst and large/small dissolution cavities. The gases are generally dry, derived dominantly from the overlying Carboniferous–Permian coal measures. The gases are accumulated in stratigraphic traps related to karst paleo-geomorphology and lithologic traps associated with late diagenetic features of carbonate rocks. Although the precise timings of the thermal events during the evolution of the Ordos Basin are still subject to considerable debate, there is a general consensus that events occurring during the Yenshanian orogeny (150–115 Ma) were the most important for the Paleozoic source rocks. It appears that two episodes of hydrocarbon charge have occurred in the Ordovician gas reservoirs in the Jingbian field.  

Results 1 to 15 of 23
You probably didn't submit anything to search for