MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_left.php on line 5
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That dry hole is a hole not obtaining any production. a non-producing well [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_right.php on line 7
What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for dimensions (Keyword) returned 120 results for the whole karstbase:
Showing 16 to 30 of 120
RILLENKARREN ON GYPSUM IN NOVA-SCOTIA, 1993,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Stenson R. E. , Ford D. C. ,
Rillenkarren are defined as densely packed, rainfall generated, bedrock channels, forming on slopes. They are usually no more than a few centimetres in width. Their lengths are dependant on the downslope extent of exposed bedrock, Rillenkarren exist in many karst terraines on many types of rock. Rillenkarren on gypsum were measured at four differing sites in Nova Scotia. The results are compared with previous data for naturel rillenkarren on limestones. It was found that gypsum rillenkarren tend to exhibit a smaller mean width that those on limestone. Mean lengths could not be established because rillenkarren elongation on the gypsum was limited by the length of the exposed surface. These conclusions result from the first systematic study of naturally occurring rillenkarren on gypsum and are contrary to the previously speculated dimensions reported by various authors

VARIOUS APPROACHES FOR FLOW SIMULATIONS IN A KARST - APPLICATION TO ROSPO MARE FIELD (ITALY), 1994,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Corre B,
Rospo Mare field is located in the Adriatic Sea, 20 km of the Abruzzes coast, at an average depth of 80 m. The reservoir is a karst which is essentially conductive; yet unlike a conventional porous medium, it cannot be simulated by the usual tools and techniques of reservoir simulation. Therefore, several approaches were used to describe the flow mechanism during the production period in greater detail. The first approach consisted of generating three-dimensional images which were constrained by both petrophysical and geological factors and then, using up-scaling techniques, obtaining the equivalent permeabilities (scalar or tensorial) of grid blocks located in different zones within the karst. This approach shows that within the infiltration zone it is possible, whatever the scale, to find an equivalent homogeneous porous medium; on the other hand, within the epikarst this equivalent medium does not exist below pluridecametric dimensions. Thus it is impossible to study the sweeping mechanism on a small scale, so we must use a deterministic model which describes the network of pipes in the compact matrix, in which a waterflood is simulated by means of a conform finite-element model. This constituted the second approach. The third and final approach consisted of inventing a system of equations to analytically solve the pressure field in a network of vertical pipes which are intersected by a production drain and submitted to a strong bottom water-drive. This model allows us to simulate the water-oil contact rise within the reservoir and study the flows depending on the constraints applied to the production well. It appears that cross flows occur in the pipes even during the production period

GROUND-WATER BEHAVIOR IN KARST - EXAMPLE OF THE OMBLA SPRING (CROATIA), 1995,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Bonacci O,
The hydro-electric power plant (HEPP) which will exclusively use water from a karst underground storage basin will be built in the vicinity of the abundant karst spring Ombla in Croatia. This paper presents the results obtained by hydrogeologic, hydrologic and hydraulic investigations related to the principles of ground water circulation in the karst. The analyses included the determination of the effective porosity n(e) of the karst aquifer and the definition of the volume of large conduits and small fractures in the karst which form the aquifer volume. The position and dimensions of large karst conduits have also been defined. It was established that in three small springs, Zaton, Zavrelje and Slavljan, water overflows from the Ombla Spring in periods of high ground water levels, It was also discovered that at certain periods the Dupuit expression for steady-state flow in an unconfined aquifer can be used. In accordance with this, it was possible to determine the values of hydraulic conductivity, K (in m s(-1)), for the Ombla aquifer. They range from 2 x 10(-3) to 5 x 10(-3) m s(-1) and are inversely proportional to the Ombla Spring discharge. Continuous measurements of the ground water level by several piezometers located in the karst hinterland of the Ombla Spring and simultaneous measurement of the discharge made it possible to define discharge curves of the Ombla Spring dependent upon the ground water levels at Various locations. Characteristic features of the discharge curves made the identification of the position and dimensions of the main karst conduits possible

Geographical variation in the tropical cave cockroach Paratemnopteryx stonei Roth (Blattellidae) in North Queensland, Australia., 1996,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Slaney David Paul, Weinstein Philip
Observations of cave dwelling organisms in both tropical and temperate caves often reveal morphological modifications, which may reflect various stages of adaptation to cave life. From April 1994 to June 1995 a number of adult Paratemnopteryx stonei were collected from 7 caves in tropical North Queensland to investigate the degree of geographical variation in such troglomorphies between cave populations. Results of morphometric analyses showed the occurrence of a morphological discontinuity between cave populations from the different geographic regions. The body dimensions particularly important in discriminating between each cave population were tegmen length (both sexes), and secondly, tegmen width and tarsus length for males and females respectively. Morphological differences between populations are discussed in relation to stages of adaptation to cave live.

3-D seismic evidence of the effects of carbonate karst collapse on overlying clastic stratigraphy and reservoir compartmentalization, 1996,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Hardage B. A. , Carr D. L. , Lancaster D. E. , Simmons J. L. , Elphick R. Y. , Pendleton V. M. , Johns R. A. ,
A multidisciplinary team, composed of stratigraphers, petrophysicists, reservoir engineers, and geophysicists, studied a portion of Boonsville gas field in the Fort Worth Basin of north-central Texas to determine how modern geophysical, geological, and engineering techniques can be combined to understand the mechanisms by which fluvio-deltaic depositional processes create reservoir compartmentalization in a low- to moderate-accommodation basin. An extensive database involving well logs: cores, production, and pressure data from more than 200 wells, 26 mi(2) (67 km(2)) of 3-D seismic data, vertical seismic profiles (VSPs), and checkshots was assembled to support this investigation. We found the mast Important geologic influence on stratigraphy and reservoir compartmentalization in this basin to be the existence of numerous karst collapse chimneys over the 26-mi(2) (67 km(2)) area covered by the 3-D seismic grid, These near-vertical karst collapses originated in, or near, the deep Ordovician-age Ellenburger carbonate section and created vertical chimneys extending as high as 2500 fl (610 m) above their point of origin causing significant disruptions in the overlying elastic strata. These karst disruptions lend to be circular in map view, having diameters ranging from approximately 500 ft (150 m) to as much as 3000 ft (915 m) in some cases. Within our study area, these karat features were spaced 2000 ft (610 m) to 6000 ft (1830 m) apart, on average. The tallest karst collapse zones reached into the Middle Pennsylvanian Strawn section, which is some 2500 ft (760 m) above the Ellenburger carbonate where the karst generation began. We used 3-D seismic imaging to show how these karst features affected the strata above the Ellenburger and how they have created a well-documented reservoir compartment in the Upper Caddo, an upper Atoka valley-fill sandstone that typically occurs 2000 ft (610 m) above the Ellenburger. By correlating these 3-D seismic images with outcrops of Ellenburger karat collapses, we document that the physical dimensions (height, diameter, cross-sectional area) of the seismic disruptions observed in the 3-D data equate to the karst dimensions seen in outcrops. We also document that this Ellenburger carbonate dissolution phenomenon extends over at least 500 mi (800 km), and by inference we suggest karst models like we describe here may occur in any basin that has a deep, relatively thick section of Paleozoic carbonates that underlie major unconformities

Morphological affinities of the proximal ulna from Klasies River main site: Archaic or modern?, 1996,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Churchill Se, Pearson Om, Grine Fe, Trinkaus E, Holliday Tw,
The Middle Stone Age (MSA) asociated hominids from Klasies River Mouth (KRM) have taken on a key role in debate about the origins of modern humans, with their craniofacial remains seen as either representing the earliest well-dated modern humans in southern Africa or orthognathic late archaic humans. Diagnostic postcranial remains from Klasies are few, but one specimen-a proximal right ulna from the lower SAS member-is useful For assessing the morphological affinities of these hominids. Canonical variates analysis using 14 proximal ulnar dimensions and comparative data from European, west Asian and African archaic humans, and Levantine Mousterian, European Upper Paleolithic, African Epipaleolithic and diverse recent modern human samples (many of recent African descent) were employed to assess the morphological affinities of this specimen. Results suggest an archaic total morphological pattern for the Klasies ulna. Analysis of diaphyseal cross-sectional geometry reveals an ulnar shaft with relatively thick cortical bone, but the specimen cannot be readily distinguished from Neandertals or early anatomically modem humans on the basis of shaft cross-sectional properties. If the isolated ulna from Klasies is indicative of the general postcranial morphology of these hominids, then the MSA-associated humans from KRM may not be as modern as has been claimed from the craniofacial material. It ii: possible also that the skeletal material from KRM reflects mosaic evolution-retention of archaic postcranial characteristics. perhaps indicating retention of archaic habitual behavior patterns, in hominids that were becoming craniofacially modern. (C) 1996 Academic Press Limited

Structure et comportement hydraulique des aquifers karstiques, DSc thesis, 1996,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Jeannin, P. Y.

This thesis aims to provide a better knowledge of karst flow systems, from a functional point of view (behaviour with time), as well as from a structural one (behaviour in space). The first part of the thesis deals with the hydrodynamic behaviour of karst systems, and the second part with the geometry of karstic networks, which is a strong conditioning factor for the hydrodynamic behaviour.
Many models have been developed in the past for describing the hydrodynamic behaviour of karst hydrogeological systems. They usually aim to provide a tool to extrapolate, in time and/or space, some characteristics of the flow fields, which can only be measured at a few points. Such models often provide a new understanding of the systems, beyond what can be observed directly in the field. Only special field measurements can verify such hypotheses based on numerical models. This is an significant part of this work. For this purpose, two experimental sites have been equipped and measured: Bure site or Milandrine, Ajoie, Switzerland, and Holloch site, Muotathal, Schwyz, Switzerland. These sites gave us this opportunity of simultaneously observe hydrodynamic parameters within the conduit network and, in drillholes, the "low permeability volumes" (LPV) surrounding the conduits.
These observations clearly show the existence of a flow circulation across the low permeability volumes. This flow may represent about 50% of the infiltrated water in the Bure test-field. The epikarst appears to play an important role into the allotment of the infiltrated waters: Part of the infiltrated water is stored at the bottom of the epikarst and slowly flows through the low permeability volumes (LPV) contributing to base flow. When infiltration is significant enough the other part of the water exceeds the storage capacity and flows quickly into the conduit network (quick flow).
For the phreatic zone, observations and models show that the following scheme is adequate to describe the flow behaviour: a network of high permeability conduits, of tow volume, leading to the spring, is surrounded by a large volume of low permeability fissured rock (LPV), which is hydraulically connected to the conduits. Due to the strong difference in hydraulic conductivity between conduits and LPV, hydraulic heads and their variations in time and space are strongly heterogeneous. This makes the use of piezometric maps in karst very questionable.
Flow in LPV can be considered as similar to flow in fractured rocks (laminar flow within joints and joints intersections). At a catchment scale, they can be effectively considered as an equivalent porous media with a hydraulic conductivity of about 10-6 to 10-7 m/s.
Flow in conduits is turbulent and loss of head has to be calculated with appropriate formulas, if wanting any quantitative results. Our observations permitted us to determine the turbulent hydraulic conductivity of some simple karst conduits (k', turbulent flow), which ranges from 0.2 to 11 m/s. Examples also show that the structure of the conduit network plays a significant role on the spatial distribution of hydraulic heads. Particularity hydraulic transmissivity of the aquifer varies with respect to hydrological conditions, because of the presence of overflow conduits located within the epiphreatic zone. This makes the relation between head and discharge not quadratic as would be expected from a (too) simple model (with only one single conduit). The model applied to the downstream part of Holloch is a good illustration of this phenomena.
The flow velocity strongly varies along the length of karst conduits, as shown by tracer experiments. Also, changes in the conduit cross-section produce changes in the (tow velocity profile. Such heterogeneous flow-field plays a significant role in the shape of the breakthrough curves of tracer experiments. It is empirically demonstrated that conduit enlargements induce retardation of the breakthrough curve. If there are several enlargements one after the other, an increase of the apparent dispersivity will result, although no diffusion with the rock matrix or immobile water is present. This produces a scale effect (increase of the apparent dispersivity with observation scale). Such observations can easily be simulated by deterministic and/or black box models.
The structure of karst conduit networks, especially within the phreatic zone, plays an important role not only on the spatial distribution of the hydraulic heads in the conduits themselves, but in the LPV as well. Study of the network geometry is therefore useful for assessing the shape of the flow systems. We further suggest that any hydrogeological study aiming to assess the major characteristics of a flow system should start with a preliminary estimation of the conduit network geometry. Theories and examples presented show that the geometry of karst conduits mainly depends on boundary conditions and the permeability field at the initial stage of the karst genesis. The most significant boundary conditions are: the geometry of the impervious boundaries, infiltration and exfiltration conditions (spring). The initial permeability field is mainly determined by discontinuities (fractures and bedding planes). Today's knowledge allows us to approximate the geometry of a karst network by studying these parameters (impervious boundaries, infiltration, exfiltration, discontinuity field). Analogs and recently developed numerical models help to qualitatively evaluate the sensitivity of the geometry to these parameters. Within the near future, new numerical tools will be developed and will help more closely to address this difficult problem. This development will only be possible if speleological networks can be sufficiently explored and used to calibrate models. Images provided by speleologists to date are and will for a long time be the only data which can adequately portray the conduit networks in karst systems. This is helpful to hydrogeologists. The reason that we present the example of the Lake Thun karst system is that it illustrates the geometry of such conduits networks. Unfortunately, these networks are three-dimensional and their visualisation on paper (2 dimensions) is very restrictive, when compared to more effective 3-D views we can create with computers. As an alternative to deterministic models of speleogenesis, fractal and/or random walk models could be employed.


Interprtation morphomtrique et splo_gense : exemple de rseaux karstiques de Basse-Provence (directions de galeries, modle et maillage structural), 1997,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Blanc Jeanjoseph, Monteau Raymond
Successive tectonic phases on limestone massifs are at the origin of a fracturation grid with several pattern dimensions, and linear or organized drain directions. Mechanical reactivations are observed from Oligocene until Plio-Quaternary on a former "pyreneo-provenale" structure (Eocene). Statistical analysis of gallery and fracture directions, cave levels and descent stages (overdeepening) show several erosional stages occurring after the formation of the Antevindobonian erosional surface. The active speleogenesis during Oligocene and Miocene was controlled by tectonics in connection with European rifting and mediterranean opening. In Messinian a short and significant lowering of mediterranean base level (and water table) made drastic erosion and created vertical pits. The horizontal cave level dug during the stabilization phase of Pliocene, now perched over underground rivers, shows a new overdeepening because of glacio-eustatic Quaternary oscillations. Compressive or distensive mechanical reactivations (Upper Miocene, Pliocene, Quaternary) modified the drainage and consequently the cave organization: self-piracy, confluence and diffluence. In the endokarst, the drainage inversion can be detected in late Upper continental Miocene and early Messinian (6,5 Ma), in correlation with the tilting and extension of the continental margin. Five caves in Provence are studied: Sabre, Petit Saint-Cassien, Rampins, Planesselve river, and Tete du Cade networks.

Richard Lake, an evaporite-karst depression in the Holbrook basin, Arizona, 1997,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Neal J. T. , Colpitts R. M. ,
Richard Lake is a circular depression 35 km SE of Winslow, Arizona, about 1.6 km wide and with topographic closure of 15-23 m. The depression is 5 km south of McCauley Sinks, another depressed area about 2 km wide which contains some 40 large sinkholes. Richard Lake formerly contained water after heavy rains prior to headwater drainage modification but is now dry most of the time. It is situated within the Moenkopi / Kaibab outcrop belt with Coconino Sandstone at shallow depth near the southwestern margin of the subsurface Permian evaporite deposit in the Holbrook Basin. Outcropping strata are predominantly limestone, but the salt-karst features result from collapse of these units into salt-dissolution cavities developed in the Corduroy Member of the Schnebly Hill Formation of the Sedona Group (formerly called the Supai Salt) that underlies the Coconino. Richard Lake is interpreted as a collapse depression containing concentric faults, pressure ridges, and a 200m wide sinkhole in the center. A second set of pressure ridges parallels the axis of the nearby western end of the Holbrook Anticline, trending generally N 30 degrees W. In the alluvium at the bottom of the central sinkhole, two secondary piping drain holes were observed in early 1996. Northwest-trending fissures also were observed on the depression flanks, essentially parallel to the regional structure. The presence of Richard Lake amidst the preponderance of salt-karst features along the Holbrook Anticline suggests a similar origin by salt dissolution, but with distinct manifestation resulting from variation in overburden thick?less and consolidation. Similarities of origin between Richard Lake and McCauley Sinks seem likely, because of their similar geological setting, size, appearance, and proximity. Two lesser developed depressions of smaller dimensions occur in tandem immediately west along a N 62 degrees W azimuth. Secondary sinkholes occur within each of these depressions, as at Richard Lake. Breccia pipes are apt to be found beneath all of these structures

The detection of cavities using the microgravity technique: case histories from mining and karstic environments, 1997,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Bishop I, Styles P, Emsley Sj, Ferguson Ns,
The presence of mining-related cavities (workings, shafts and tunnels) or karstic (solution cavities and sinkholes in limestone) within the top 100 m in the rock mass restricts land utilisation, and their migration to the surface may damage property or services or cause loss of life. Confirmation of features marked on existing plans prior to design and construction may be sufficient but it is often necessary to determine the detailed sub-surface structure. The standard method of siteinvestigation is to drill a pattern of boreholes to locate the spatial extent of any cavities. However, unless the spacing is less than the cavity dimensions it is possible to miss it completely. A cavity may be filled with air, water, or collapse material resulting in a contrast in physical properties which may be detected using appropriate geophysical methods. One powerful technique is microgravity which locates areas of contrasting sub-surface density from surface measurements of the earth's gravity. Although the method is fundamentally simple, measurement of the minute variations in gravity (1 in 108) requires sensitive instruments, careful data acquisition, and data reduction and digital data analysis. Final interpretation must be performed in conjunction with independent information about the site's history and geology. This paper presents three examples in both mining and karstic environments demonstrating that microgravity is a very effective technique for detectingand delineating cavities in the sub-surface

Tracing recharge from sinking streams over spatial dimensions of kilometers in a karst aquifer, 1997,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Greene E. A. ,
Stable isotopes of hydrogen and oxygen were used to trace the sources of recharge from sinking streams to wells and springs several kilometers downgradient in the karst Madison aquifer near Rapid City, South Dakota. Temporal sampling of streamflow above the swallets identified a distinct isotopic signature that was used to define the spatial dimensions of recharge to the aquifer. When more than one sinking stream was determined to be recharging a well or spring, the proportions were approximated using a two-component mixing model. From the isotopic analysis, it is possible to link sinking stream recharge to individual wells or springs in the Rapid City area and illustrate there is significant lateral movement of ground water across surface drainage basins. These results emphasize that well-head protection strategies developed for carbonate aquifers that provide industrial and municipal water supplies need to consider lateral movement of ground-water flow from adjacent surface drainage basins

Sea water intrusion in coastal karst springs: Example of the Blaz spring (Croatia), 1997,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Bonacci O, Rojebonacci T,
Brackish karst springs are common along every karstic sea shore consisting of limestone and dolomite. On the Croatian sea coast there are more than 300 permanent or temporary brackish karst springs. From the standpoint of water supply, the problem of karst spring water salinization is quite significant because large quantities of high quality fresh water are not available to be used either as drinking water or for industrial and agricultural purposes. The salinity of brackish karst springs situated along the Adriatic coast varies from 10 to more than 18 000 mg Cl 1(-1) with an unfavourable distribution during the year. In the wet winter period, when water quantities in the region are abundant, the salinity is exceedingly low. In the warm and dry summer period the chloride concentration is high. At that season, when a shortage of flesh water in the region occurs, especially due to tourism, karst spring water is so salty that it cannot be used at all. The mechanism of sea water intrusion is relatively well known but the problem of karst springs desalinization has not been solved in practice. The Ghyben-Herzberg relationship is formulated exclusively on the basis of hydrostatic equilibrium, and its use under dynamic conditions is limited. The dynamics of fresh water circulation towards karst spring exits are very specific for each individual spring. Using numerous hydrological, hydrometric, hydrogeological and speleological investigations of the brackish Blaz (Croatia) karst spring, this paper gives the plausible position and dimensions of the main karst conduits through which sea water penetrates into the spring exit

Role of Speleology in Karst Hydrology and Hydrogeology., 1997,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Bonacci O.
Technology of speleological investigations enables special measurements of features of underground conduits, caves, pits, jamas, shafts and the other solutional sculpturings such as scallops and cave rocky relief. Speleologic investigations can reveal the positions, dimensions and interactions of underground and surface karst features and water flow in the karst and on its surface. Speleologists are capable of investigating the hydraulic conditions under which laminar or turbulent flows occur in conduits and small and narrow karst fractures. From such investigations crucial parameters for hydraulic, hydrologic and hydrogeologic modelling such as dissolution-bedform and hydraulically-transported sediment, can be obtained. For these reasons, the role of speleology in karst hydrology and hydrogeology should (and undoubtedly will) in future be given much more importance. This paper briefly explains the main theoretical aspects and gives some practical examples and experiences from Dinaric and others karst regions.

The use of geophysical techniques in the detection of shallow cavities in limestone, MSc thesis, 1997,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Walker, D. C.

Electromagnetic, resistivity and microgravity techniques were compared for their ability to delineate and resolve shallow natural cavity systems in limestone. Geophysical work was carried out at two field sites. Electromagnetic and resistivity constant-depth profiling surveys were carried out at Kitley Caves in Yealmpton, South Devon, with the purpose of determining the lateral extent of the already partially mapped system. Lower Long Chum Cave in Ribblesdale, North Yorkshire, was used as a control site for the testing of resistivity tomography and microgravity techniques. Several cavities had already been mapped at this site, and were known to be approximately cylindrical passages, with radii of 2-4m within a depth range of 5-20m, in the area to be surveyed.
At Kitley Caves, both the EM31 and resistivity surveys were carried out over a 20x30m grid, approximately 50m west of Western Ton's Quarry. The station interval for the EM31 survey was 2.5m, whereas resistivity readings were taken at 1m intervals. Both techniques identified a linear, low resistivity, anomaly orientated close to the primary joint direction. This feature is interpreted as a sediment-filled fissure, but excavation of the site would be required for verification.
The main Lower Long Chum Cave passage was also identified using EM mapping at 2.5m intervals. Four 155m lines were surveyed using resistivity tomography technique, with 32 electrodes at 5m spacing selected in a Wenner configuration. This survey successfully delineated Diccan Pot and Lower Long Churn caves in the locations and depth ranges expected, and also identified a previously unmapped feature that was interpreted as an air-filled cave or fissure 40m to the south of the main passage. The inversion process caused the features to be horizontally smeared to approximately twice their true dimensions, and in some cases anomalies from separate features were combined.
Lower Long Churn Cave was also successfully delineated using microgravity. Analysis of the residual Bouguer anomaly, combined with two dimensional forward modelling, implied a density contrast of 2.0g/cc, a radius of 2.1m and a depth of 5m. This agreed to within 2.5m with the depth given by resistivity. The position of the tunnel axis found using the two techniques differed by a maximum of 4m.
Resistivity tomography and microgravity were thus concluded to be techniques accurate in the delineation of shallow subsurface cavities. Future improvements in the latter method depend on the development of instruments that are sensitive enough to detect small changes in gravitational acceleration, whilst remaining relatively insensitive to background noise. Resistivity tomography is becoming an increasingly more valuable technique as refinements in the inversion process reduce smearing of anomalous features and improve the accuracy of the subsurface images produced.


Gypsum Trays in Torgac Cave, New Mexico, 1998,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Doran, L. M. , Hill, C. A.
Mount St. Helens is an active dacitic volcano, which is currently in a semi-dormant state after a catastrophic explosive eruption in May 1980. A dacite dome occupies the crater and plugs the volcanic vent. The crater area has been progressively covered by a layer of snow, firn, and glacier ice since as early as 1986. Heat, steam, and volcanic gases from the crater fumaroles melted over 2415 meters of cave passage in the crater ice mass. The caves are in approximate balance with the present geothermal heat release. Future changes in the thermal activity will influence the dimensions, location, ceiling, wall, and wall ablation features of these caves. Cave passages are located above fumaroles and fractures in and adjacent to the crater lava dome. Cave passages gradually enlarge by ablation, caused by outside air circulation and by geothermal sources beneath the ice. The passages form a circumferential pattern around the dome, with entrance passages on the dome flanks. Passages grow laterally and vertically toward the surface, spawning ceiling collapse.

Results 16 to 30 of 120
You probably didn't submit anything to search for