Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That ferghanite is a cave mineral - u3(vo4)2x6h2o [11].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for quartz (Keyword) returned 141 results for the whole karstbase:
Showing 16 to 30 of 141
Reactivated interstratal karst--example from the Late Silurian rocks of western Lake Erie (U.S.A.), 1992, Carlson Eh,
Interstratal karst developed in the Late Silurian rocks of western Lake Erie that, after a long interruption, was exhumed and reactivated. The dissolution front of the G evaporite of the Salina Group receded in the downdip direction during these two well-documented periods of subaerial exposure. The karst features that developed in the overlying Bass Islands Dolomite (Pridolian) consist of a large tabular body of collapse breccia and a number of smaller features including breccia pipes, partially filled pipes, blister caves and collapse dolines.The tabular breccia body and the breccia pipes, which originated penecontemporaneously during post-Silurian and pre-Middle Devonian subaerial exposure, occur along the updip edge of the present outcrop belt of the dolostone. They are monolithologic, fragment-supported rubble breccias, with the pipes exhibiting a greater fragment displacement, rotation and rounding, and a smaller fragment size. The matrix sediment of the tabular body is a quartz sand, an equivalent of the basal sandstone that filtered down from the erosion surface. The presence in the matrix sediment of nodular celestite, a later replacement of evaporites that formed when the sediment was still soft, indicates that a sabkha environment existed at the time the breccia was infilled. The partially filled pipes, which form cylindrical caves that are lined with late diagenetic celestite, are believed to be cogenetic with the collapse breccias.The blister caves and dolines occur downdip from the breccias, postdating Pleistocene glaciation and predating isostatic rebound. These caves are isolated, crescent- or oval-shaped openings with domed roofs, averaging about 60 m in width and 4 m in height. The hydration and resulting expansion of lenticular bodies of anhydrite along the receding solution front of the G unit is believed to be the cause of doming. The numerous crescentic caves, originating from the dissolution of this gypsum and the subsequent collapse of the domed roofs, are expressed at the surface as shallow dolines

REACTIVATED INTERSTRIATAL KARST EXAMPLE FROM THE LATE SILURIAN ROCKS OF WESTERN LAKE ERIE (USA), 1992, Carlson Eh,
Interstratal karst developed in the Late Silurian rocks of western Lake Erie that, after a long interruption, was exhumed and reactivated. The dissolution front of the G evaporite of the Salina Group receded in the downdip direction during these two well-documented periods of subaerial exposure. The karst features that developed in the overlying Bass Islands Dolomite (Pridolian) consist of a large tabular body of collapse breccia and a number of smaller features including breccia pipes, partially filled pipes, blister caves and collapse dolines. The tabular breccia body and the breccia pipes, which originated penecontemporaneously during post-Silurian and pre-Middle Devonian subaerial exposure, occur along the updip edge of the present outcrop belt of the dolostone. They are monolithologic, fragment-supported rubble breccias, with the pipes exhibiting a greater fragment displacement, rotation and rounding, and a smaller fragment size. The matrix sediment of the tabular body is a quartz sand, an equivalent of the basal sandstone that filtered down from the erosion surface. The presence in the matrix sediment of nodular celestite, a later replacement of evaporites that formed when the sediment was still soft, indicates that a sabkha environment existed at the time the breccia was infilled. The partially filled pipes, which form cylindrical caves that are lined with late diagenetic celestite, are believed to be cogenetic with the collapse breccias. The blister caves and dolines occur downdip from the breccias, postdating Pleistocene glaciation and predating isostatic rebound. These caves are isolated, crescent- or oval-shaped openings with domed roofs, averaging about 60 m in width and 4 m in height. The hydration and resulting expansion of lenticular bodies of anhydrite along the receding solution front of the G unit is believed to be the cause of doming. The numerous crescentic caves, originating from the dissolution of this gypsum and the subsequent collapse of the domed roofs, are expressed at the surface as shallow dolines

La grotte de la Movile (Dobroudja, Roumanie) : analyses _minralogiques, 1993, Diaconu G. , Morar M.
The authors present the results of X-ray analyses which, in the Movile cave, give evidence of the presence of a mineralogical association made up of calcite, aragonite, ankerite and quartz. They also take into consideration the conditions of a specific genesis for this cave which has been particularly affected by sulphurous thermomineral waters.

DISLOCATION OF THE EVAPORITIC FORMATIONS UNDER TECTONIC AND DISSOLUTION CONTROLS - THE MODEL OF THE DINANTIAN EVAPORITES FROM VARISCAN AREA (NORTHERN FRANCE AND BELGIUM), 1993, Rouchy J. M. , Groessens E. , Laumondais A. ,
Within the Franco-Belgian segment of the Hercynian orogen, two thick Dinantian anhydritic formations are known, respectively in the Saint-Ghislain (765 m) and Epinoy 1 (904 m) wells. Nevertheless, occurrences of widespread extended breccias and of numerous pseudomorphs of gypsum/anhydrite in stratigraphically equivalent carbonate deposits (boreholes and outcrops), suggest a larger extent of the evaporitic conditions (fig. 1, 2). The present distribution of evaporites is controlled by palaeogeographical differentiation and post-depositional parameters such as tectonics and dissolution. These latter have dissected the deposits formerly present in all the structural units. By using depositional, diagenetic and deformational characters of these formations, the article provides a model for the reconstruction of a dislocated evaporitic basin. This segment of the Hercynian chain is schematically composed of two main units (fig. 1, 3) : (1) the autochthonous or parautochthonous deposits of the Namur synclinorium, (2) the Dinant nappe thrusted northward over the synclinorium of Namur. The major thrust surface is underlined by a complex fault bundle (faille du Midi) seismically recognized over more than 100 km. A complex system of thrust slices occurs at the Hercynian front. Except for local Cretaceous deposits, most of the studied area has been submitted to a long period of denudation since the Permian. Sedimentary, faunistic and geochemical data argue for a marine origin of the brines which have generated the evaporites interbedded with marine limestones. Sedimentary structures. - The thick evaporitic formations are composed of calcium-sulfates without any clear evidence of the former presence of more soluble salts (with the exception of a possible carbonate-sulfate breccia in the upper part of the Saint-Ghislain formation). As in all the deeply buried evaporitic formations, the anhydrite is the main sulfate component which displays all the usual facies : pseudomorphs after gypsum (fig. 4A, B), nodular and mosaic (fig. 4C), laminated. The gypsum was probably an important component during the depositional phase despite the predominant nodular pattern of the anhydrite. Early diagenetic nodular anhydrite may have grown during temporary emersion of the carbonates (sabkha environments), but this mechanism cannot explain the formation of the whole anhydrite. So, most of the anhydrite structures result from burial-controlled gypsum --> anhydrite conversion and from mechanical deformations. Moreover, a complex set of diagenetic processes leads to various authigenic minerals (celestite, fluorite, albite, native sulfur, quartz and fibrous silica) and to multistaged carbonate <> sulfate replacements (calcite and dolomite after sulfate, replacive anhydrite as idiomorphic poeciloblasts, veinlets, domino-like or stairstep monocrystals...). These mineral transformations observed ill boreholes and in outcrops have diversely been controlled during the complex evolution of the series as : depositional and diagenetic pore-fluid composition, pressure and temperature changes with burial, bacterial and thermochemical sulfate reduction, deep circulations favored by mechanical brecciation, mechanical stresses, role of groundwater during exhumation of the series. Deformational structures. - A great variety of deformational structures as rotational elongation, stretching, lamination, isoclinal microfolding, augen-like and mylonitic structures are generated by compressive tectonic stresses (fig. 4D to J). The similarities between tectonic-generated structures and sedimentary (lamination) or diagenetic (pseudo-nodules) features could lead lo misinterpretations. The calcareous interbeds have undergone brittle deformation the style and the importance of which depend of their relative thickness. Stretching, boudins, microfolds and augen structures F, H. I) affect the thin layers while thicker beds may be broken as large fractured blocks dragged within flown anhydrite leading to a mylonitic-like structure (fig, 4G). In such an inhomogeneous formation made of interlayered ductile (anhydrite) and brittle (carbonate) beds, the style and the intensity of the deformation vary with respect to the relative thickness of each of these components. Such deformational features of anhydrite may have an ubiquitous significance and can result either from compressive constraints or geostatic movements (halokinesis). Nevertheless, some data evidence a relation with regional tangential stresses: (1) increase of the deformation toward the bottom of the Saint-Ghislain Formation which is marked by a deep karst suggesting the presence of a mechanical discontinuity used as a drain for dissolving solutions (fig. 3, 4); (2) structural setting (reversed series, internal slidings) of the Epinoy 1 formation under the Midi thrust. However, tectonic stresses also induce flowing deformations which have contributed to cause their present discontinuity. It can be assumed that the evaporites played an active role for the buckling of the regional structure as detachment or gliding layers and more specifically for the genesis of duplex structures. Breccia genesis. - Great breccia horizons are widely distributed in outcrops as well as in the subsurface throughout the greater part of the Dinant and Namur units (fig. 2). The wide distribution of pseudomorphosed sulfates in outcrops and the stratigraphical correlation between breccia and Saint-Ghislain evaporitic masses (fig. 2) suggest that some breccia (although not all) have been originated from collapse after evaporites solution. Although some breccia may result from synsedimentary dissolution, studied occurrences show that most of dissolution processes started after the Hercynian deformation and, in some cases, were active until recently : elements made of lithified and fractured limestones (Llandelies quarries) (fig. 5A), preservation of pseudomorphs of late replacive anhydrite (Yves-Gomezee) (fig. 5B, C), deep karst associated with breccia (Douvrain, Saint Ghislain, Ghlin boreholes) (fig. 3, 4, 5D)). Locally, the final brecciation may have been favored by a mechanical fragmentation which controlled water circulations (fig. 5E). As postulated by De Magnee et al. [19861, the dissolution started mostly after the Permian denudation and continued until now in relation with deep circulations and surface weathering (fig. 6). So, the above-mentioned occurrences of the breccia are logically explained by collapse after dissolution of calcium-sulfates interbeds of significant thickness (the presence of salt is not yet demonstrated), but other Visean breccia may have a different origin (fig. 5F). So, these data prove the extension of thick evaporitic beds in all the structural units including the Dinant nappe, before dissolution and deformation. Implications. - Distribution of Visean evaporites in northern France and Belgium is inherited from a complicated paleogeographic, tectonic and post-tectonic history which has strongly modified their former facies, thicknesses and limits (fig. IA, 6). Diversified environments of deposition controlled by both a palaeogeographical differentiation and water level fluctuations led to the deposition of subaqueous (gypsum) or interstitial (gypsum, anhydrite) crystallization. Nevertheless, most of the anhydrite structures can be interpreted as resulting from burial conversion of gypsum to anhydrite rather than a generalized early diagenesis in sabkha-like conditions. Deformation of anhydrite caused by Hercynian tangential stresses and subsequent flow mechanisms, have completed the destruction of depositional and diagenetic features. The tectonic deformations allow us to consider the role of the evaporites in the Hercynian deformations. The evaporites supplied detachment and gliding planes as suggested for the base of the Saint-Ghislain Formation and demonstrated by the structural setting of Epinoy 1 evaporites in reverse position and in a multi-system of thrust-slices below the Midi overthrust (fig. 7). So, although the area in which evaporation and precipitation took place cannot be exactly delineated in geographic extent, all the data evidence that the isolated thick anhydritic deposits represent relics of more widespread evaporites extending more or less throughout the different structural units of this Hercynian segment (fig. 1B). Their present discontinuity results from the combination of a depositional differentiation, mechanical deformations and/or dissolution

Alpine karsts. Genesis of large subterranean networks. Examples : the Tennengebirge (Austria) - the Ile de Crémieu, the Chartreuse and the Vercors (France), PhD Thesis, 1993, Audra, Philippe

This work, based on the study of several underground alpine networks, aims to propose some milestone in the history of these karstic regions.

The first part of the work is made up of three regional studies.

The Tennengebirge mountains are a massif of the limestone High Alps in the region of Salzburg in Austria. A cone karst close to the base level developed in the Neogene. Streams from the Alps fed the karst, resulting in the huge horizontal networks of which the Eisriesenwelt provides evidence. During the successive phases of upthrust, the levels of karstification, whether on the surface or deeper down, settled into a tier pattern, thus descending in stages from the base level. From the Pliocene era onwards, thanks to an increase in potential, alpine shafts replace the horizontal networks. The formation of these shafts is more pronounced during glaciation. The study of the Cosa Nostra - Bergerhöhle system developing 30 km of conduits on a gradient reaching almost 1 500 m provides a fairly full view of the karstification of this massif. It includes the horizontal levels developed in the Miocene and the Plio-Pleistocene, joined together by vertical sections. The most noteworthy features of the Tennengebirge, as in the neighboring massifs, lie first and foremost in the extreme thickness of the limestone which has recorded and immunized the differents steps of karstification. Secondly, the size of the networks can be, for the most part, accounted for by the contribution of allogenous waters from the streams of the Neogene and the glaciers of the Pleistocene. Generally sudden and unexpected, these flows of water engendered heavy loads (up to 600 m), simultaneously flooding several levels. To a lesser extent, the situation is similar today.

The Ile de Cremieu is a low limestone plateau on the western edge of the Jura. Due to its location in the foothills, the lobes of the Rhône glacier have covered it up, obliterating the surface karst. However, widespread evidence of anteglacial morphologies remains : paleokarst, cone karst, polygenic surface. Because of glacial plugging, access to the underground karst is limited. The main cavity is the cave of La Balme. Its initial development dates back to an early period. The morphological study has permitted the identification of several phases which go back to the Pleistocene and which are related to the Rhône glacier. The latter brought about modifications in the base level by supplying its merging waters as well as moraine material. These variations in the base level shaped the drainage structure. The underground glacial polishes are one of the noteworthy aspects recorded.

The massives of the Moucherotte and dent de Crolles belong to the northern French Prealps. They conceal large networks, respectively the Vallier cave and the Dent de Crolles. They were formed in the early Pliocene after the final orogenic phase and are in the form of horizontal conduits. The upthrust, which brought about the embanking of the Isère valley, left them in a perched position by taking away the basin which fed them. They were later, however, able to take advantage of waters from the Isère glacier during a part of the Pleistocene. The Vallier cave contains particularly glacio-karstic sediments of the lower Pleistocene, representing unique evidence of glaciation during this period. The vertical networks were put in place at the end of the Pliocene with the increase in karstification potential ; they underwent changes in the Pleistocene due to the effect of autochton and allogenous glaciers.

The second part of the work deals in general with the various forms and processes of karstification, sometimes going beyond the Alps. The study of cave deposits is a privileged tool in the understanding and reconstruction not only of the history of the networks but also the regional environment. The dating of speleothems by the U / Th method has very ofen given an age of over 350 000 years. The age of the networks is confirmed by the use of paleomagnetism which has yielded evidence of speleothems and glacio-karstic sediments anterior to 780 000 years. Anisotropic measurements of magnetic susceptibility have been used to distinguish the putting into place of glacio-karstic deposits by decantation.

Measurements of calcite rates lead to a typology of sediments based on their nature and carbonate content (rehandled weathered rocks, fluvial sands, carbonated varves, decantation clays). Granulometry confirms this differenciation by supplying precise details of transport and sedimentation modes : suspension and abrupt precipitation of clay, suspension and slow decantation of carbonated varves, suspension and rolling together with a variable sorting of sand and gravel. Mineralogical analyses oppose two types of detrital deposits. On the one hand, the rehandling of antequaternary weathered rocks extracted by the karst as a result of scouring during environmental destabilization and on the other hand, sediments characteristic of the ice age of the Pleistocene. The latter are not highly developed and their arrival in the karst is always later. Examination of heavy minerals, the morphoscopy of quartz grains and study of micromorphologies on thin blades provide precise details of conditions of evolution. The use of these methods of investigation allows for an accurate definition of the features of the evolution of the differents types of fillings, particularly speleothems, rehandled weathered rocks as well as carbonated varves. This wealth and complexity are emphasized by a detailed study of the sedimentary sequences of the Vallier cave and of the Bergerhöhle.
Speleogenesis is approached last of all in the light of above study. Emphasis is placed on the major part played by corrosion in the temporarily phreatic zone and on its many consequences (multi-level concept, simultaneous evolution of levels, origin of deep waterlogged karsts…).
Varia tions in the base level have induced karstification in contexts in which the potential was weak. These were followed by periods of increased potential to which were added the effects of glaciation. Perched horizontal levels belong to the first stages which ended in the early Pliocene, whereas alpine shafts developed in the second context. The role of structure and the parameters governing the shape of conduits (pits, meanders, canyons) are also dealt with. The different parts of the karst are borne in mind when dealing with the strength of karstic erosion during the ice age. It notably appears that it is weak on the crests and more or less non-existent in the deep parts of the karst which are liable to flooding. Finally, a preliminary analysis of an observation of neotectonic traces is presented.


SEDIMENT-HOSTED GOLD MINERALIZATION IN THE RATATOTOK DISTRICT, NORTH SULAWESI, INDONESIA, 1994, Turner S. J. , Flindell P. A. , Hendri D. , Hardjana I. , Lauricella P. F. , Lindsay R. P. , Marpaung B. , White G. P. ,
The Ratatotok district in the Minahasa Regency of North Sulawesi, Indonesia is an area of significant gold mineralisation. Gold has been mined in the district since at least the 1850s, and intensively by the Dutch between 1900 and 1921 with a recorded production of 5,060 kg of gold. Newmont began exploring the district in 1986, and has delineated a major sediment-hosted replacement-style deposit at Mesel, and other smaller deposits in an 8 X 5 km area. A total drill-indicated resource of over 60 metric tonnes of gold ( 2 Moz) is reported for Mesel, and three of the smaller deposits. Approximately 80% of this resource is refractory. Silver grades are usually low (< 10 g/t). The Mesel deposit is similar to many Carlin-type deposits in carbonate hostrocks, alteration, geochemical signature and ore mineralogy, but is distinct in tectonic setting. The discovery of replacement-style mineralisation at Mesel, in an impure limestone within a Tertiary island arc environment, demonstrates that deposits with outward characteristics similar to Carlin-type mineralisation are not restricted to a continental setting. Carbonate sediments in the Ratatotok district were deposited in a Late Miocene restricted basin. Later compressional tectonics caused uplift that resulted in karst development in the limestone and erosion of the adjacent volcanic arc with deposition of a thick epiclastic unit. This was followed by intrusion of shallow level pre-mineral andesite into the sequence. Mineralisation at Mesel, and probably elsewhere in the district, is synchronous with the late-stage reactivation of strike-slip faults. Mineralising fluids at Mesel were focussed along steep structures sympathetic to these faults, and trapped below a relatively impermeable andesite cap rock. Hydrothermal fluids caused decalcification of the silty, more permeable carbonate units with the formation of secondary dolomite, deposition of fine arsenian pyrite, silica veinlets and gold. Volume loss due to decalcification and dolomite formation caused collapse brecciation which enhanced fluid flow and further mineralisation. This locally culminated in total decarbonation and deposition of massive silica. Late-stage stibnite occurs in structural zones within the ore deposit, whereas arsenic (as realgar and orpiment) and mercury (as cinnabar) are concentrated on the periphery. Elsewhere in the Ratatotok district, gold mineralisation is restricted to replacement-style mineralisation in permeable zones along limestone-andesite contacts, open-space-filling quartz-calcite veins and stockworks, and residual quartz-clay breccias. The residual breccias are developed in-situ, and are interpreted to form by dissolution of the wallrock limestone from around pre-existing mineralisation. This has resulted in widespread eluvial gold occurrences

HIGH-RESOLUTION SEISMIC EXPRESSION OF KARST EVOLUTION WITHIN THE UPPER FLORIDIAN AQUIFER SYSTEM - CROOKED LAKE, POLK COUNTY, FLORIDA, 1994, Evans Mw, Snyder Sw, Hine Ac,
We collected 43 km of high resolution seismic reflection profiles from a 14.5-hectare lake in the central Florida sinkhole district and data from three adjacent boreholes to determine the relationship between falling lake levels and the underlying karst stratigraphy. The lake is separated from karstified Paleogene to early Neogene carbonates by 65-80 m of siliciclastic sands and clays. The carbonate and clastic strata include three aquifer systems separated by clay-confining units: a surficial aquifer system (fine to medium quartz sand in the upper 20-30 m), the 25-35 m thick intermediate aquifer system (in Neogene siliciclastics), and the highly permeable upper Floridan aquifer system in Paleogene to early Neogene limestones. Hydraulic connection between these aquifer systems is indicated by superjacent karst structures throughout the section. Collapse zones of up to 1000 m in diameter and > 50 m depth extend downward from a prominent Middle Miocene unconformity into Oligocene and Upper Eocene limestones. Smaller sinkholes (30-100 m diameter, 10-25 m depth) are present in Middle to Late Neogene clays, sands, and carbonates and extend downward to or below the Middle Miocene unconformity. Filled and open shafts (30-40 m diameter; 10-25 m depth) ring the lake margin and overlie subsurface karst features. The large collapse zones are localized along a northeast-southwest line in the northern ponds and disrupt or deform Neogene to Quaternary strata and at least 50 m of the underlying Paleogene carbonate rocks. The timing and vertical distribution of karst structures are used to formulate a four-stage model that emphasizes stratigraphic and hydrogeologic co-evolution. (1) Fracture-selective shallow karst features formed on Paleogene/early Neogene carbonates. (2) Widespread karstification was limited by deposition of Middle Miocene clays, but vertical karst propagation continued and was focused because of the topographic effects of antecedent karst. (3) Groundwater heads, increase with the deposition of thick sequences of clastics over the semipermeable clays during Middle and Late Neogene time. The higher water table and groundwater heads allowed the accumulation of acidic, organic-rich soils and chemically aggressive waters that percolated down to Paleogene carbonates via localized karst features. (4) After sufficient subsurface dissolution, the Paleogene carbonates collapsed, causing disruption and deformation of overlying strata. The seismic profiles document an episodic, vertically progressive karst that allows localized vertical leakage through the clay-confining units. The spatial and temporal karst distribution is a result of deposition of sediments with different permeabilities during high sea levels and enhanced karst dissolution during low sea levels. Recent decreases in the potentiometric elevation of the Floridan Aquifer System simulates a sea-level lowstand, suggesting that karst dissolution will increase in frequency and magnitude

Guab As, une grotte dans de la dolomie mgascristalline hydrothermale (Namibie occidentale), 1995, Marais E. , Martini J. , Irish J.
The authors describe a cave in the semi-desert area of the Hakos Mountains, 100km to the southwest of Windhoek, Namibia. The cave is significant due to the very unusual country rock, with which it is associated. It formed by dissolution of the dolomite core of a large quartz vein, which is 800 m long and 200 m wide, developed in mica-schist. The cave consists of a complex succession of large chambers, more or less overlapping each others, with walls generally consisting of quartz. In most instances the dolomite has been completely dissolved or occurs under the floor, concealed by dust and scree. Although the cave developed within a very small volume of carbonate, the total length reaches 695 m and the depth 85 m. The bottom is occu-pied by a pool which is only temporarily filled with water and probably marks the position of a perched water-table. The cave formed in a perched phreatic environment during an undetermined period

Karst in siliceous rocks; Karst landforms and caves in the Auyn-Tepui Massif (Est. Bolivar, Venezuela)., 1995, Piccini Leonardo
During the expedition Tepuy 93'. six caves were explored in the precambrian quartzites of Roraima Group, in the Auyan-tepui massif. One of this caves reaches the depth of 370 m and a development of almost 3 km; its name is "Sima Auyan-tepui Noroeste" and it is currently the deepest cave in the world discovered in siliceous rocks The geological and morphological study of this cave has underlined again the importance of deep solutional weathering, along the network of fractures for the formation of caves in siliceous rocks. The different formation stages of the big superficial shafts, called "simas" were observed in some vertical collapse caves explored during the expedition, while galleries with phreatic forms were observed in the deep network of caves. All these deep forms involve karst processes of solution at least in the initial stage.

Solutional landforms in quartz sandstones of the Sydney Basin, PhD thesis, 1995, Wray, R. A. L

Solutional landforms have been described for over a hundred years from limestone terrains and are termed karst. In many tropical regions landforms of similar morphology but on highly siliceous sandstones and quartzites have also recently been identified. The similarity of many of these features in morphology and also in genetic solutional processes to those on limestone has prompted recent calls for these quartzose landforms to also be regarded as true karst.
Although not unknown in temperate latitudes, these highly siliceous solutional landforms have been most commonly studied in present-day tropical regions, or areas believed to have been tropical in the recent past. This concentration of research in hot-wet areas, allied with the long held assertion of the insolubility of silica, especially quartz, led to a belief that tropical climatic conditions are necessary for karstic solution of these rocks. However, some of these quartzose solutional landforms are known in areas of temperate climate where there is little evidence for prior tropical conditions. A comprehensive worldwide review of these landforms, and the processes involved in their formation, has not previously been conducted and forms the basis from which this study stems.
The Sydney Basin in southeastern Australia has had a stable temperate climate for much of the Cainozoic with no evidence of tropical climate. The highly quartzose Permo-Triassic sandstones of this area have little carbonate, but nevertheless display a wide range of landforms morphologically similar to those both on limestones and also tropical quartzites These include large bedrock towers, grikes, caves, smaller solution basins and runnels, and even widespread silica speleothems. This study describes the morphology of this suite of landforms in detail, and provides a comparative analysis of these sandstone forms to those reported from quartzites of tropical areas and also their limestone analogues. Various microscopic and natural water chemistry analysis are then utilised in examining the poorly understood natural processes responsible for their formation. The process of sandstone solutional weathering in the Sydney Basin is also compared with that reported from the tropics, finding very little difference in either the form or magnitude of attack between these two climatically distinct regions. No previous studies have examined the wide range of solutional features found on quartz sandstones in one region of a climate comparable to Sydney, nor the processes involved in the genesis of these forms.


A SEM analysis of quartz grains in the sediments of the Lhasa karst areas, Tibet, 1996, Zhang David Dian

Occurrence and significance of stalactites within the epithermal deposits at Creede, Colorado, 1996, Campbell Wr, Barton Pb,
In addition to the common and abundant features in karst terranes, stalactites involving a wide variety of minerals have also been found in other settings, including epigenetic mineral deposits, bur these are almost always associated with supergene stages. Here we describe a different mode of occurrence from the Creede epithermal ore deposits, in Colorado, wherein stalactites of silica, sphalerite, galena, or pyrite formed in a vapor-dominated setting, below the paleo-water table, and except possibly for pyrite, as part of the hypogene mineralization. Axial cavities may, or may not, be present. No stalagmites have been recognized. The stalactites are small, from a few millimeters to a few centimeters long and a few millimeters in outer diameter. They represent only a small fraction of one percent of the total mineralization, and are covered by later crystals. Their growth orientation usually is unobservable; however, the parallel arrangement of all stalactites in a given specimen, consistency with indicators of gravitational settling, and the common presence of axial structures make the stalactitic interpretation almost unavoidable. In contrast with common carbonate stalactites, the growth mechanism for th sulfide and silica stalactites requires extensive evaporation. Stalactitic forms have also been reported from other deposits, mostly epithermal or Mississippi Valley-type occurrences, but we caution that stalactite-like features can form by alternative processes

Espeleogenese em quartzitos: comparacoes entre as serras de Ibitipoca, Luminarias e Carrancas (MG)., 1996, Correa Neto A. V. , Dutra G. , Baptista Filho J.
558

The geomorphology of solution cave sequences in the Kalk Bay Mountains, southern Cape Peninsula. BSc thesis, 1996, Shearer, H.

The Kalk Bay Mountains of the southern Cape Peninsula, South Africa, show marked development of pseudokarstic features such as caverns, dolines and grikes. These features have formed over at least 100 million years on supposed inert quartzitic sandstones of the Peninsula Formation of the Table Mountain Group. Pseudokarst on sandstone is relatively rare world-wide and various aspects of cave genesis are highlighted in the Cape Peninsula. Cape Peninsula pseudokarst is relict, occurs at high altitudes above the present water table and could provide clues to palaeoenvironmental conditions during the African erosion period.
The cave systems in the Kalk Bay Mountains occur in at least three levels in the thickly-bedded sandstone. These different levels are the result of differential uplift during the Miocene and Pliocene. The Cape Peninsula Mountains are tabular and blocky, as opposed to the fold mountains of the rest of the South Western Cape. Much more of the overlying sedimentary layers in the Cape Peninsula have also been removed by weathering and erosive processes. The caves can be compared to similar pseudokarst features on sandstone in areas such as Gran Sabana, Venezuela. The acidic water chemistry in Venezuela contributes to a very intensive weathering environment. Present day humid tropical conditions in Venezuela are likely to be similar to palaeoclimatic conditions in the Kalk Bay Mountains, contributing to sandstone cave genesis.


Thesis Abstract: Solutional landforms in quartz sandstones of the Sydney Basin, 1997, Wray R. A. L.

Results 16 to 30 of 141
You probably didn't submit anything to search for