MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_left.php on line 5
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That collapse chamber is an underground chamber containing notable quantities of collapsed material. the term is commonly abused in describing the origin of cave chambers floored by collapse debris. though wall and roof collapse are common modifying processes in larger chambers, it is important to remember that such collapse cannot form a chamber, as it can only take place into a preexisting cavity [9].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_right.php on line 7
What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for thickness (Keyword) returned 170 results for the whole karstbase:
Showing 16 to 30 of 170
Theoretical model of surface karstic processes, 1996,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Veress M. , Pentek K. ,
Our study improves theories of denudation of karst surfaces. We examine a debris zone developed mostly by solutional fragmentation of the fissured rock. Denudation of karsts is attributed to the downward movement of the debris zone. The different rates of this movement in a karst region cause different denudation rates and so wight result in the development of dolinas. Therefore our model might be suitable for the explanation and description of the development of solution dolines. According to the differential equation of solution, the migration rate of the karstic relief is determined by the CO2 production, the soaking time and the average diameter of the fragments of the debris zone. According to the above - supposing constant parameters of karstification - the time of denudation at any point of a karstic area can be also calculated when knowing the original thickness of the rock exposed to karstic denudation. The age of a solution doline can be determined by the formula obtained

Karst and hydrogeology of Lebanon, 1997,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Edgell Hs,
Karst is very well-developed in Lebanon in thick, exposed, fractured and folded Jurassic, Cretaceous, and Eocene carbonates, as well as in localized, coastal Miocene limestones. This karstification not only results from the predominant calcareous lithology, but is also caused by the high, northerly trending ranges of he country, which cause abundant precipitation, as heavy rain and thick snow, to fall on Mt. Lebanon, Jabal Barouk, Jabal Niha, and Mt. Hermon. Lesser amounts fall on the Anti-Lebanon, Beqa'a Valley and the coastal hills of the country. Some 80% of precipitation occurs from November through February. The karst water emerges from five first-magnitude springs (Ain ez Zarqa (11 m(3)/sec), Ain Anjar (max. 10m(3)/sec), Nabaa Ouazzani (max. 6m(3)/sec), Nabaa Arbaain (mau. 3 m(3)/sec) and Nabaa Barouk (max. 3m(3)/sec), plus hundreds of second-and third-magnitude springs, and thousands of smaller springs. The large springs are all karstic and contribute to 13 perennial springs in the main Lebanese ranges, and 2 in the Anti-Lebanon. These include major rivers, such as the Nahr el Litani, Nahr el Assi (Orontes) and Nabr el Hasbani (upper Jordan River). More than two-thirds of the area of Lebanon (i.e. 6900 km(2)) is karstified and includes surface karst features, such as poljes, uvalas, dolines, blind valleys, natural bridges, and ponors, as well as smaller features, like karren and hoodoos. Subsurface karst features include many types of solutional shafts and galleries, grottoes, subsurface lakes and rivers and most types of speleothems. There are at least 15 aquifers in Lebanon, of which 14 are in karstified carbonate strata. The 1700m thick limestone/dolomite core of the ranges and over 2000m thickness of flanking, or overlying, Cretaceous limestones provide the majority of these aquifers, while significant aquifers are also found in thick Eocene limestones. High transmissivity values (T = or > 1.83 x 10(-1) m(2)) occur in these karstic aquifers, as is shown by the rapid decline in spring flow over the dry summer and autumn months, and their very quick recharge by winter and spring rains and heavy snow on the Lebanese ranges

Principal features of evaporite karst in Canada, 1997,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Ford Dc,
Outcrops of sulfate arid mixed sulfate-carbonate rocks are common everywhere in Canada outside of the Shield province. Interstratal salt deposits are abundant in the interior lowlands. Types of karst that occur are determined chiefly by relations between (i) formation thickness and purity, (ii) regional topography and hydraulic gradient (iii) effects of receding Wisconsinan and earlier glaciers, and (iv) extent of modern permafrost. Exposures of bare karst on thick, pure sulfate formations are comparatively rare. Two principal landform types found on them are: (1) high-density polygonal karst (micro-sinkhole densities of thousands per km(2)); where hydraulic gradients are high and tills are thin; (2) hills and ridges of blocks uplifted and fractured by hydration (anhydrite) tectonics at paleo-icefront positions where hydraulic gradients are low. Deeply till-mantled karst dominated by collapse and suffosion sinkholes in the mantling detritus is well developed in southwestern Newfoundland and in central and northern Nova Scotia. Covered karst is abundant on sulfates conformably overlain by carbonate br elastic strata; collapse sinkholes ale the principal landform. Very large breccia pipes (up to 25 x 15 km) ale associated with deep subrosion of salt during glacier recessions. Syngenetic breccia karst is a fourth, distinct category created in some formations of thin, interbedded dolostones and sulfates. Where these are exposed td high hydraulic gradients, deep calcite-cemented breccias were formed in a first generation, upon which sinkhole and pinnacle karsts and dissolution drape topographies were able to develop rapidly in late-glacial and post-glacial conditions

Mixed transport reaction control of gypsum dissolution kinetics in aqueous solutions and initiation of gypsum karst, 1997,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Raines M. A. , Dewers T. A. ,
Experiments with gypsum in aqueous solutions at 25 degrees C, low ionic strengths, and a range of saturation states indicate a mixed surface reaction and diffusional transport control of gypsum dissolution kinetics. Dissolution rates were determined in a mixed flow/rotating disc reactor operating under steady-state conditions, in which polished gypsum discs were rotated at constant speed and reactant solutions were continuously fed into the reactor. Rates increase with velocity of spin under laminar conditions (low rates of spin), but increase asymptotically to a constant rate as turbulent conditions develop with increasing spin velocity, experiencing a small jump in magnitude across the laminar-turbulent transition. A Linear dependence of rates on the square root of spin velocity in the laminar regime is consistent with rates being limited by transport through a hydrodynamic boundary layer. The increase in rate with onset of turbulence accompanies a near discontinuous drop in hydrodynamic boundary layer thickness across the transition. A relative independence of rates on spinning velocity in the turbulent regime plus a nonlinear dependence of rates on saturation state are factors consistent with surface reaction control. Together these behaviors implicate a 'mixed' transport and reaction control of gypsum dissolution kinetics. A rate law which combines both kinetic mechanisms and can reproduce experimental results under laminar flow conditions is proposed as follows: R = k(t) {1 - Omega(b)() zeta [1 - (1 2(1 - Omega(b)())(1/2)]} where k(t) is the rate coefficient for transport control, and Omega(b)() is the mean ionic saturation state of the bulk fluid. The dimensionless parameter zeta(=Dm(eq)()/2 delta k() where m(eq)() = mean ionic molal equilibrium concentration, D is the diffusion coefficient through the hydrodynamic boundary layer, delta equals the boundary layer thickness and k() is the rate constant for surface reaction control) indicates which process, transport or surface reaction, dominates, and is sensitive to the hydrodynamic conditions in the reactor. For the range of conditions used in our experiments, zeta varies from about 1.4 to 4.5. Rates of gypsum dissolution were also determined in situ in a cavern system in the Permian Blaine Formation, southwestern Oklahoma. Although the flow conditions in the caverns were not determinable, there is good agreement between lab- and field-determined rates in that field rate magnitudes lie within a range of rates determined experimentally under zero to low spin velocities A numerical model coupling fluid flow and gypsum reaction in an idealized circular conduit is used to estimate the distance which undersaturated solutions will travel into small incipient conduits before saturation is achieved. Simulations of conduit wall dissolution showed-member behaviors of conduit formation and surface denudation that depend on flow boundary conditions (constant discharge or constant hydraulic gradient and initial conduit radius. Surface-control of dissolution rates. which becomes more influential with higher fluid flow velocity, has the effect that rate decrease more slowly as saturation is approached than otherwise would occur if rates were controlled by transport alone. This has the effect that reactive solutions can penetrate much farther into gypsum-bearing karst conduits than heretofore thought possible, influencing timing and mechanism of karst development as well as stability of engineered structures above karst terrain

Phototrophic Microorganisms of the Pamukkale, 1997,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Pentecost Allan, Bayari Serdar , Yesertener Cahit
The travertines at Pamukkale contain a diverse assemblage of phototrophs: 17 species of cyanobacteria, 16 diatoms, and 5 Chlorophyceae. Two communities were recognized on the active travertines: (1) surficial mats dominated by filamentous cyanobacteria, particularly Lyngbya (Phormidium) laminosum forming soft weakly mineralized layers to 10 mm thick, and (2) a predominantly endolithic assemblage, also dominated by cyanobacteria developing 2-5 mm below the travertine surface. The distribution of these communities is determined largely by water flow and the degree of desiccation. Two further communities are briefly described from nondepositing areas. Most of the active travertine consists of alternating layers of micrite and sparite 0.25-0.75 mm in thickness, which probably result from short-term fluctuations in water flow rather than diel events (photosynthesis, temperature). The presence of needle-fiber calcite in surface samples suggests that evaporation of water may play some part in travertine formation. The phototrophs appear to influence the travertine fabric only locally, where the surficial growths contain strings of calcite crystals ad-hering to the filaments, forming irregularly laminated layers. The hot-spring water is believed to be contaminated with sewage and agricultural effluent, but there was no evidence to suggest that this is currently affecting the travertine deposits. The water is supersaturated with respect to calcite when it contacts the travertine, and precipitation is primarily the result of carbon dioxide evasion. Water chemistry and discharge measurements indicate a total travertine deposition rate of 35 tonnes per day.

Groundwater circulation and geochemistry of a karstified bank-marginal fracture system, South Andros Island, Bahamas, 1997,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Whitaker Fiona F. , Smart Peter L. ,
On the east coast of South Andros Island, Bahamas, a major bank-marginal fracture system characterised by vertically extensive cavern systems (blue holes) is developed sub-parallel to the steep-sided deep-water re-entrant of the Tongue of the Ocean. In addition to providing a discharge route for meteoric, mixed and geochemically evolved saline groundwaters, a strong local circulation occurs along the fracture system. This generates enhanced vertical mixing within voids of the fracture system, evidenced by the increasing mixing zone thickness, and the thinning and increasing salinity of brackish lens waters from north to south along the fracture system. Furthermore, tidally driven pumping of groundwaters occurs between the fracture and adjacent carbonate aquifer affecting a zone up to 200 m either side of the fracture.The resultant mixing of groundwaters of contrasting salinity and within and along the fracture system and with the surrounding aquifer waters, together with bacterial oxidation of organic matter, generates significant potential for locally enhanced diagenesis. Undersaturation with respect to calcite within the fresh (or brackish)-salt water mixing zone is observed in the fracture system and predicted in the adjacent aquifer, while mixing between the brackish fracture lens and surrounding high fresh waters causes dissolution of aragonite but not calcite. The latter gives rise to considerable secondary porosity development, because active tidal pumping ensures continued renewal of dissolutional potential. This is evidenced by calcium and strontium enrichment in the brackish lens which indicates porosity generation by aragonite dissolution at a maximum rate of 0.35% ka-1, up to twice the average estimated for the fresh water lens. In contrast saline groundwaters are depleted in calcium relative to open ocean waters suggesting the formation of calcite cements.The development of a major laterally continuous cavernous fracture zone along the margin of the carbonate platform permits enhanced groundwater flow and mixing which may result in generation of a diagenetic `halo' at a scale larger than that generally recognised around syn-sedimentary fractures in fossil carbonates. This may be characterised by increased secondary porosity where a relative fall in sea-level results in exposure and formation of a meteoric groundwater system, or cementation by `marine' calcite both below this meteoric system, and where the bank surface is flooded by seawater

Results of a study about tracing tests transfer functions variability in karst environment, 1997,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Doerfliger N.
Artificial tracing tests are often used to simulate migration of a point-source contaminant under various hydrological conditions in karst hydrogeological impact assessment or to define groundwater protection zones. Due to economic reasons, it is rather difficult to carry out adequate tracing tests to determine what are the possible recovery curves over range of discharges at the outlet, are the tracer test results representative of the spring watercatchment being protected ? Our objective was to characterize the tracing-systems in a karst environment by a mean transfer function; such transfer function may be used to predict the breakthrough curve of a point-source contaminant taking into account an error factor. A Jura mean transfer function with + and -95% interval confidence functions can be established and differentiated from the Alps mean transfer function. The use of this transfer function to predict the response of a point-source contaminant requires considerations of water catchment size, thickness or the aquifer and discharge at the outlet. The results of this variability analysis confirm that the transfer functions by themselves may not be used to protect the whole karst spring water catchment, as this one is affected by the heterogeneity of the physical parameters. At the scale of a water catchment, transfer functions are not the major tool to protect the groundwater. But with a multiattribute approach of vulnerability mapping, transfer functions contribute to the development of groundwater protection strategy.

An Electromagnetic Geophysical Survey of the Freshwater Lens of Isla de Mona, Puerto Rico, 1998,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Richards, R. T. , Troester, Jo. W. , Mart?nez, M. I.
An electromagnetic reconnaissance of the freshwater lens of Isla de Mona, Puerto Rico was conducted with both terrain conductivity (TC) and transient electromagnetic (TEM) surface geophysical techniques. These geophysical surveys were limited to the southern and western parts of the island because of problems with access and cultural metallic objects such as reinforced concrete roadways on the eastern part of the island. The geophysical data were supplemented with the location of a freshwater spring found by scuba divers at a depth of about 20 m below sea level along the northern coast of the island. The geophysical data suggest that the freshwater lens has a maximum thickness of 20 m in the southern half of the island. The freshwater lens is not thickest at the center of the island but nearer the southwestern edge in Quaternary deposits and the eastern edge of the island in the Tertiary carbonates. This finding indicates that the ground-water flow paths on Isla de Mona are not radially symmetrical from the center of the island to the ocean. The asymmetry of the freshwater lens indicates that the differences in hydraulic conductivity are a major factor in determining the shape of the freshwater lens. The porosity of the aquifer, as determined by the geophysical data is about 33%

Signification chrono-climatique de splothmes lamins de Chine du nord, 1998,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Ming Tan, Tungsheng Liu, Xiaoguang Qin, Xianfeng Wang
Speleothems from North China show that many of them have very fine microlayer growth. Most of these layers have bi-optical characters that can be observed under fluorescent and transmitted light. Hydrological analysis and radio-isotopic dating demonstrate that those layers are annually laminated. A Holocene stalagmite from Shihua Cave in Southwest Beijing presents thousands of micro-layers which are very similar to tree rings. Based on the measurements of the thickness of annual layers, short-term climatic changes over the last 1,130 years in the Beijing area are discussed.

Main features of the pre-Gosau paleokarst in the Brezovske Karpaty Mts. (Western Carpathians, Slovakia), 1998,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Cincura J,
The considerable areal extent and great thickness of Middle/Upper Triassic carbonate sequences favourably influenced the development of paleokarst during the Paleoalpine karst period in the Brezovske Karpaty Mts. Carbonate formations provide data concerning the first-pre-Gosau-phase of the Paleoalpine karst period. Freshwater limestones, bauxites, reddish ferrugineous silty clays, Valchov Conglomerate, shallow doline-like depressions and deeper canyon-like forms represent the most important pre-Gosau karst sediments and forms

Mapping groundwater vulnerability: the Irish perspective, 1998,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Daly D, Warren Wp,
The groundwater protection scheme used in the Republic of Ireland since the 1980s had not encompassed the vulnerability mapping concept. Yet internationally, vulnerability maps were becoming an essential part of groundwater protection schemes and a valuable tool in environmental management. Consequently, following a review of protection schemes world-wide, the scheme used in Ireland was updated and amended to include vulnerability maps as a crucial component of the scheme. The approach taken to vulnerability assessments and mapping in the Republic of Ireland has been dictated by the following fundamental questions: Vulnerability of what? Vulnerability to what? Which factors determine the degree of vulnerability? What is the appropriate scale for map production? How can limitations and uncertainties be taken into account? How can vulnerability assessments be integrated into environmental and resource management? The following decisions were made: (i) we should map the vulnerability of groundwater, not aquifers or wells/springs; (ii) the position in the groundwater system specified to be of interest is the water-table (i.e. first groundwater encountered) in either sand/gravel aquifers or in bedrock; (iii) we should map the vulnerability of groundwater to contaminants generated by human activities (natural impacts are a separate issue); (iv) as the main threat to groundwater in Ireland is posed by point sources, we should map the vulnerability of groundwater to contaminants released at 1-2 m below the ground surface; (v) the characteristics of individual contaminants should not be taken into account; (vi) the natural geological and hydrogeological factors that determine vulnerability are the sub-soils above the watertable, the recharge type (whether point or diffuse) and, in sand/gravels, the thickness of the unsaturated zone; (vii) based on these factors, four vulnerability categories are used (extreme, high, moderate and low); (viii) map scales of 1:50 000 and 1:10 000 are preferred; (ix) limitations and uncertainties are indicated by appropriate wording on the maps and a disclaimer; (x) vulnerability maps should be incorporated into groundwater protection schemes, which should be used in decision-making on the location and control of potentially polluting developments. Vulnerability maps have now been produced for a number of local authority areas. They are an important part of county groundwater protection schemes as they provide a measure of the likelihood of contamination, assist in ensuring that protection schemes are not unnecessarily restrictive of human economic activity, help in the choice of engineering preventative measures, and enable major developments, which have a significant potential to contaminate, to be located in areas of relatively low vulnerability and therefore of relatively low risk, from a groundwater perspective

Drip flow variations under a stalactite of the Pere Noel cave (Belgium). Evidence of seasonal variations and air pressure constraints, 1998,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Genty D, Deflandre G,
The study of drip rate and seepage water electrical conductivity (hereafter called conductivity) under one stalactite in the Pere Noel cave (Belgium), with data produced from an automatic station since 1991, demonstrates several previously unobserved features: (1) measurement of drop volume shows that, for 94% of the time series, drop volume is constant (= 0.14 ml), but when discharge exceeds 48.2 drips min(-1), drop volume decreases, probably because of secondary drop formation; (2) the interannual drip rate variation is correlated to the annual water excess and its correlant, rainfall (R-2 = 0.98; exponential model); this result introduces a new improvement in the understanding of the previously investigated relationships between stalagmite annual laminae thickness and mean annual rainfall; (3) the drip rate shows a well marked seasonality: it increases abruptly in late fall or early winter and decreases slowly during spring, summer and fall. Increased discharge is accompanied by an increase in conductivity, which suggests that the flushed water is more mineralized and was stored in the karst aquifer for several months; (4) superimposed on these seasonal variations, there are two kinds of flow regimes which are driven by the atmospheric pressure: (i) a 'wiggles regime', whose duration is 1-7 days in length and which is inversely proportional to the air pressure wiggles; it is explained by either a ''shut-off faucet'' process due to the rock formation stress, or to a change in the two-phases flow component proportions (air/water); (ii) an 'unstable regime' characterized by abrupt switches (<2 h) or oscillations with variable periodicities, from a few minutes to a few hours. These occur when the drip rate reaches a threshold (i.e. 240 drops 10 min(-1)); the chaotic behaviour of this phenomenon is discussed. (C) 1998 Elsevier Science B.V. All rights reserved

Holocene development of three isolated carbonate platforms, Belize, central America, 1998,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Gischler E. , Hudson J. H. ,
Locally operating factors such as topography of the reef basement and exposure to waves and currents rather than regionally effective factors such as the post-glacial sea level rise in the western Atlantic explain the different Holocene developments of the three isolated carbonate platforms Glovers Reef, Lighthouse Reef, and Turneffe Islands offshore Belize. A series of NNE-striking tilted fault-blocks at the passive continental margin forms the deep basement of the Belize reefs. Glovers and Lighthouse Reefs are located on the same fault-block, while Turneffe Islands is situated west of Lighthouse Reef on an adjacent fault-block. The three platforms are surrounded by deep water and have surface-breaking reef rims. Significant differences exist between platform interiors. Glovers Reef has only 0.2% of land and an 18 m deep, well-circulated lagoon with over 800 patch reefs. Lighthouse Reef has 3% of land and a well-circulated lagoon area. Patch reefs are aligned along a NNE-striking trend that separates a shallow western (3 m) and a deeper eastern (8 m) lagoon. Turneffe Islands has 22% of land that is mainly red mangrove. Interior lagoons are up to 8 m deep and most have restricted circulation and no patch reefs. Surface sediments are rich in organic matter. In contrast, the northernmost part of Turneffe Islands has no extensive mangrove development and the well-circulated lagoon area has abundant patch reefs. Holocene reef development was investigated by means of 9 rotary core holes that all reached Pleistocene reef limestones, and by radiometric dating of corals. Maximal Holocene reef thickness reaches 11.7 m on Glovers Reef, 7.9 m on Lighthouse Reef, and 3.8 m on Turneffe Islands. Factors that controlled Holocene reef development include the following. (1) Holocene sea level. The margin of Glovers Reef was flooded by the rising Holocene sea ca. 7500 YBP, that of Lighthouse Reef ca. 6500 YBP, and that of Turneffe Islands between 5400 and 4750 YBP. All investigated Holocene reefs belong to the keep-up type, even though the three platforms were flooded successively and, hence, the reefs had to keep pace with different rates of sea level rise. (2) Pre-Holocene topography. Pleistocene elevation and relief are different on the three platforms. This is the consequence of both tectonics and karst. Different elevations caused successive reef initiation and they also resulted in differences in lagoon depths. Variations in Pleistocene topography also explain the different facies distribution patterns on the windward platforms that are located on the same fault-block. On Lighthouse Reef tectonic structures are clearly visible such as the linear patch reef trend that is aligned along a Pleistocene fault. On Glovers Reef only short linear trends of patch reefs can be detected because the Pleistocene tectonic structures are presumably masked by the higher Holocene thickness. The lower Pleistocene elevation on Glovers Reef is probably a consequence of both a southward tectonic tilt, and stronger karstification towards the south related to higher rainfall. (3) Exposure to waves and currents. Glovers Reef, Lighthouse Reef, and the northernmost part of Turneffe Islands receive the maximum wave force as they are open to the Caribbean Sea. Adjacent lagoons are well-circulated and have luxuriant patch reef growth and no extensive mangrove development. By contrast, most of Turneffe Islands is protected from the open Caribbean Sea by Lighthouse Reef to the east and is only exposed to reduced wave forces, allowing extensive mangrove growth in these protected areas. (C) 1998 Elsevier Science B.V

Contribution to knowledge of gypsum karstology, PhD thesis, 1998,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Calaforra Chordi, J. M.

The objective of this study was not to establish a definitive judgement regarding a topic for which very little previous information was available, but rather to open new routes for research into karst by means of a particularized analysis of some of the factors involved in the speleogenesis of gypsiferous materials. The main obstacle to the attainment of this goal has been the scientific community's lack of interest in karst in gypsum, particularly in our country, until the nineteen eighties. To overcome this neglect it was decided, in my opinion quite correctly, to extend the bounds of the study as far as possible, so that the information obtained from the contrast found between the most important worldwide zones of karst in gypsum could be applied to the gypsiferous karst in our country, and in particular, to the most significant, the karst in gypsum of Sorbas.
This is the justification for the numerous references in the text to the gypsiferous karst and cavities in gypsum that are most relevant in Spain (Sorbas, Gobantes, Vallada, Archidona, Estremera, Baena, the Ebro Basin, Estella, Beuda, Borreda, etc.) and also to the best-known gypsiferous karsts worldwide (Podolia, Secchia, Venna del Gesso Romagnolo, Sicily and New Mexico). By means of these comparisons, the initial lack of information has been overcome.
The study is based on three central tenets, which are interrelated and make up the first three chapters of this report. The first consideration was to attempt to characterize the particular typology of gypsiferous karst from the geological (both stratigraphic and structural) point of view. This chapter also provides an introduction to each of the gypsiferous karsts examined. The second chapter is dedicated to the geomorphology of gypsiferous karst, under both superficial and subterranean aspects. It is important to note that the study of a gypsiferous karst from the speleological point of view is something that may seem somewhat unusual; however, this is one of the points of principle of this paper, the attempt to recover the true meaning of a word that has historically been unfairly condemned by a large part of the Spanish scientific community. Thirdly, a detailed study has been made of the hydrochemistry of the most important gypsiferous karsts in our region, together with the presentation of a specific analytical methodology for the treatment of the hydrochemical data applicable to the gypsiferous karst.
Geological characterization of gypsum karst
In the characterization of karst in gypsum, the intention was to cover virtually all the possibilities from the stratigraphic and structural standpoints. Thus, there is a description of widely varying gypsiferous karsts, made up of Triassic to Miocene materials, some with a complex tectonic configuration and others hardly affected by folding. The gypsiferous karsts described, and their most significant geological characteristics, are as follows:
Karst in gypsum at Sorbas (Almeria): composed of Miocene gypsiferous levels with the essential characteristic of very continuous marly interstrata between the layers of gypsum, which decisively affect the speleogenesis of the area. The gypsum layers have an average thickness of about 10 m and, together with the fracturing in the zone, determine the development of the gypsiferous cavities. These are mainly selenitic gypsum - occasionally with a crystal size of over 2 m - and their texture also has a geomorphologic and hydrogeologic influence. This area is little affected by folding and so the tectonic influence of speleogenesis is reduced to the configuration of the fracturing.
The Triassic of Antequera (Malaga): this is, fundamentally, the gypsiferous outcrop at Gobantes-Meliones, originating in the Triassic and located within the well-known "Trias" of Antequera. It is made up of very chaotic gypsiferous materials containing a large quantity of heterometric blocks of varied composition; the formation may be defined as a Miocene olitostromic gypsiferous breccia that is affected by important diapiric phenomena. The presence of hypersoluble salts at depth is significant in the modification of the hydrochemical characteristics of the water and in the speleogenetic development of the karst.
The Triassic of Vallada (Valencia): Triassic materials outcrop in the Vallada area; these mainly correspond to the K5 and K4 formations of the Valencia Group, massive gypsum and gypsiferous clays. The influence of dolomitic intercalations in the sequence is crucial to the speleogenesis of the area and this, together with intense tectonic activity, has led to the development in this sector of the deepest gypsiferous cavity in the world: the "Tunel dels Sumidors". As in the above case, the presence of hypersoluble salts at depth and the varied lithology influence the variations in the hydrodynamics and hydrochemistry of the gypsiferous aquifer.
Other Spanish gypsum karsts: this heading covers a group of gypsiferous areas and cavities of significant interest from the speleogenetic standpoint. They include the area of Estremera (Madrid), with Miocene gypsiferous clays and massive gypsum arranged along a large horizontal layer; this has produced the development of the only gypsiferous cavity in Spain with maze configuration, the Pedro Fernandez cave. The study of this cave has important hydrogeological implications with respect to speleogenesis in gypsum in phreatic conditions. The Baena (Cordoba) sector, in terms of its lithology, is comparable to the "Trias de Antequera". Here, the cavities developed in gypsiferous conglomerates, following structural discontinuities have enabled contact between carbonate and gypsiferous levels, and so we may speak of a mixed karstification: a karst in calcareous rocks and gypsum. The karst of Archidona (Malaga) is similar to that of the Gobantes-Meliones group and is significant because of the geomorphologic evolution of the karst, which is related to the diapiric ascent of the area and the formation of karstic ravines. The karst in the Miocene and Oligocene gypsum of the Ebro Basin (Zaragoza), has been taken as a characteristic example of a gypsiferous karst developed under an alluvial cover, with the corresponding geomorphological implications in the evolution of the surface landforms. In the gypsiferous area of Borreda (Barcelona), the presence of anhydritic levels in the sequence might have influenced the speleogenesis of its cavities. The cavity of La Mosquera, in Beuda (Girona), developed in massive Paleogene gypsum. This is the only Spanish example of a phreatic gypsiferous cavity developed in saccaroid gypsum, which is related to the particular subterranean morphology discovered. Finally, this group includes other Spanish gypsiferous outcrops visited during the preparation of this report, the references to which may be found in the relevant chapters.
Karst in gypsum in Europe and America: In order to complete the study of karst in gypsum, and with the idea of using all the available data on the karstology of gypsiferous materials for comparative studies of data for our country, a complementary activity was to define the most significant geological characteristics of the most important gypsiferous karsts in the world. An outstanding example is the gypsiferous karst at Podolia (Ukraine), developed in microcrystalline Miocene gypsum which has undergone block tectonics related to the collapse of the Precarpatic foredeep. This gypsum provides interesting data on speleogenesis in gypsiferous materials, as its evolution is related to the confining of the only gypsiferous stratum (of 10 to 20 m depth) producing interconnected labyrinthine galleries of over 100 km in length. Another well-known karst in gypsum is the one located at "Venna del Gesso Romagnolo" (Italy), in the Bologna region, with a lithology that is very similar to that which developed at Sorbas, but with the difference that it underwent more intense tectonics with folding and fracturing of the Tertiary sediments of the Po basin. In the same Italian province, in "L'alta Val di Sec-chia", there are outcrops of karstified Triassic materials which correspond to the formation of Burano, composed of gypsum and anhydrite with hypersoluble salts at depth and very notable diapiric phenomena. The study of this area has been used for a comparative analysis - geomorphology and hydrogeochemistry - with the Spanish gypsiferous karsts developed in Triassic levels. The third Italian gypsiferous karst to be considered is the one developed in Sicily, which has extensive Messinian outcrops of microcrystalline and selenitic gypsum as well as a great variety of lithologic types within the gypsiferous sequence, which we term the "gessoso solfifera" sequence. This gypsiferous karst is especially interesting from the geomorphologic standpoint due to the great quantity and variety of present superficial karstic forms. This has also served as a guide for the study of Spanish gypsiferous karsts. Finally, considering the relation between climatology and the development of karstic forms, we have also studied the karst in gypsum in New Mexico, where there is an extensive outcrop of Permian gypsum, both micro and macrocrystalline, situated on a large platform almost unaffected by deformation, and where the conditions of aridity are very similar to those found in the gypsiferous karst of Sorbas.
Geomorphological characterization of gypsum karst
From the geomorphological standpoint, the intention is to give an overview of the great variety of karstic forms developed in gypsum, traditionally considered less important than those developed in carbonate areas. This report shows this is not the case.
The theory of Convergence of Forms has been shown to be an efficient tool for the study of the morphology of karst in gypsum. Here, its principles have been used to provide genetic explanations for various gypsiferous forms derived from carbonate studies, and for the reverse case. In fact, studying a karst in gypsum is like having available a geomorphological laboratory where not only are the processes faster but they are also applicable to the karstology of carbonate rocks.
A large number of minor karstic forms (Karren) have been identified. The most important factors conditioning their formation are the texture of the rock, climatology and the presence of overlying deposits. The first, particularly, is largely responsible for determining the abundance of certain forms with respect to others. Thus, Rillenkarren, Trittkarren and small "kamenitzas" are more frequently found in microcrystalline and sandstone gypsum (for example, karst in gypsum in Sicily (Italy) and Va-llada (Valencia, Spain). Others seem to be more exclusive to selenitic gypsum, such as exfoliation microkarren, or are closely related to the climatology of the area (Spitzkarren develops from the alteration of gypsum in semiarid conditions). Others are related either to the presence of developed soil cover (Rundkarren, using Convergence of Forms), or to their specific situation (candelas and Wallkarren around dolines and sinkholes) or to the microtexture of the gypsum and the orientation of the 010 and 111 crystalline planes and twinning planes for the development of nanokarren.
The tumuli are the most peculiar forms of the Sorbas karst in gypsum, though they have also been identified in other gypsiferous karsts (Bolonia, New Mexico, Vallada, etc.). These are subcircular domes of the most superficial layer of the gypsum. Their formation has been related to processes of precipitation-solution and of capillary movement through the gypsiferous matrix. Their extensive development is largely determined by the climatology of the area and by the structural organization. It is therefore clear that the best examples are found in the karst of Sorbas due to the abrupt changes in temperature and humidity that occur in a semiarid climate, and because of the horizontality of the gypsiferous sequence.
Karst in gypsum and its larger exokarstic forms, apart from being climatically determined, also depend on the structural state and lithological determinants of the area. Thus, it is possible to differentiate between gypsiferous karsts where the lithology, together with erosive breakup, is more important (Sorbas and New Mexico) and others where confining hydraulic conditions persist (Estremera and Podolia). In other cases, tectonics has played a significant modelling role, and there is a clear possibility of an inversion of the relief (Bolonia or Sicily) or of the effect of diapiric processes (Secchia, Vallada, Antequera). The typological diversity of the dolines is obviously also related to these premisses. Another example is the relation existing between carbonate precipitation and gypsum solution, as evidenced in contrasting examples (Bolonia versus Sorbas).
Subterranean karstic forms have been examined from a double perspective: the morphology of the passages and the mineralization within the cavities. With respect to the former, a noteworthy example is the interstratification karst of Sorbas, where subterranean channels have developed during two well-differentiated phases, the phreatic and the vadose. The first was responsible for the formation of the small proto-galleries, currently relicts that are observable as false dome channels in the bottom of the gypsiferous strata. The second, with an erosive character, enabled the breakup of the marly interstrata and the formation of the large galleries found today. Other aspects considered include the speleogenetic influence of the presence of calcareous intercalations in the gypsiferous sequence (Vallada karst), gypsiferous agglomerates (Baena karst), anhydrite (Rotgers karst), suffusion processes (Sorbas karst) and the importance of condensation.
Spelothemes in gypsiferous cavities have been approached with special concern for gypsiferous speleothemes, in particular those which, due to their genetic peculiarity or to the lack of previous knowledge about them, are most significant. Among these are gypsum balls, with phenomena of solution, detritic filling, capillarity and evaporation; gypsum hole stalagmites, where the precipitation-solution of the gypsum controlling the formation of the central orifice is related to the previous deposit of carbonate speleothemes; gypsum trays that mark the levels of maximum evaporation; gypsum dust, determined by abrupt changes in temperature and humidity in areas near the exterior of gypsiferous cavities. All of these are characteristic of, and practically exclusive to, gypsiferous karsts in semiarid ztenes such as Sorbas and New Mexico.
Karst in gypsum has been morphologically classified with reference to the previously-mentioned criteria: the presence and typology of epigean karstic forms, both macro and microform; the typology of hypogean karstic forms (passages) and the type of speleothemes within the cavities (gypsiferous or carbonate). All these variables are clearly influenced by climatology, and so a study of the geomorphology of gypsiferous karst is seen to be an efficient tool for the analysis of the paleoclimatology of an area.
Hydrogeochemical characterization of gypsum karst
The hydrogeochemical characterization of karst in gypsum was approached in two stages. The first one was intended to establish themodels to be applied to the hydrochemistry approach, while the second provided various examples of hydrochemical studies carried out in gypsiferous karsts.
The theoretical framework which has been shown to be most accurate with respect to the formulation of chemical equilibria in water related to gypsiferous karst is the Virial Theory and the Pitzer equations.
For this study, we used a simplification of these equations as far as the second virial coefficient by means of a simple, polynomial variation to obtain the equilibrium state of the water with respect to the gypsum, for an ionic strength value greater than 0.1 m and temperatures of between 0.5 and 40 "C. This was the case of the gypsiferous karsts found to be related to hypersaline water at depth (Vallada, Gobantes-Meliones, Poiano). In the remaining situations, where the ionic strength was below 0.1 m, only the theory of ionic matching was used.
The hydrochemical study of the gypsiferous karst of Gobantes-Meliones (Malaga) led to the hypothesis of the possible influence of hypersaline water on karstification in gypsum. Using theoretical examples of the mixing of water derived both from hypersaline water and from water related only to the gypsiferous karst, it was shown that above a percentage content of 0.1:0.9 of saline and sulphated water, the mixture is subsaturated with respect to gypsum and other minerals. On reaching percentages greater than 0.5:0.5, values of oversaturation are again found. This could mean that the contact between sulphated and hypersaline water is a karstification zone in gypsum at depth.
In the gypsiferous karst at Salinas-Fuente Camacho (Granada), a study has been made of the hydrochemical influence of dolomitic levels in the sequence by means of the analysis of the hydrochemical routes between hydraulically-connected points. The generic case of mass transfer in this gypsiferous aquifer implies a precipitation of calcite which is in-congruent with dolomitic solution, proving that the process of dedolomitization in gypsiferous aquifers with an abundance of dolomitic rocks can be an effective process. In situations of high salinity, with contributions of hypersaline water, the process may be inverted, such as occurs in coastal carbonate aquifers influenced by the fresh-saltwater interface.
The gypsiferous aquifer of Sorbas-Tabernas (Almeria) provides the best case of karstification in gypsum in Spain; the hydrochemical study carried out has been used as an example of karstification in gypsum completely uninfluenced by sodium-chloride facies. It is shown, from the hydrochemical similarities between the different sectors, that the uniformity of the flow from the system main spring (Los Molinos) responds to the delayed hydraulic input through the overlying post-evaporitic materials and to the pelitic intercalations of the gypsiferous sequence. The aquifer is partially semiconfined, a situation which is comparable to the onset of the karstification stage, while the area of the Sorbas karst, strictly speaking, bears no hydriaulic relation to the rest of the system, behaving like a free aquifer intrinsically related to the epikarstic zone. This fact is demonstrated by the hydrochemical differences between the main spring and those related to gypsiferous cavities.
Apart from the general study of the Sorbas-Tabemas aquifer, a study was also made of the hydrochemical-time variations within cavities, and in particular within the Cueva del Agua, where it is possible to observe particular processes affecting karstification in gypsum, such as the precipitation of carbonates on the floor of the cavity which produce, in that area, a greater solution of gypsum (the phenomenon of hyperkarstification). Furthermore, the temporal evolution of the chemistry of the cavity, along 800 m of subterranean flow through its interior, shows the existence of inertial sectors where the variations were less abrupt. Only in the case of particular sectors, related to sporadic hydriaulic contributions or to the proximity to points of access., was a notable seasonal influence detected.
A similar hydrochemical study was carried out in the karst of Vallada (Valencia), along the cavity of the Tunel dels Sumidors. The chemistry here was compared with that of the springs of Brolladors (whose water rapidly infiltrates into the cavity) and Saraella (a saline resurgence of the whole system). Unexpected increases in the ionic content of certain salts (sulphates and chlorides) were detected during periods of increased flow; these were interpreted as the effect of the recharging of the Saraella spring arising from the immediate contribution of rapidly circulating sulfated water coming from the cavity and the subsequent mobilization of interstitial water with an ionic content higher than the characteristic level of the spring.
We present as a hypothesis the idea that, in addition to the hydrogeochemical processes described that can affect the evolution of a gypsiferous karst, the processes of sulphate reduction also influence karstification in gypsum, at least during the earliest stages. Some examples such as the presence of gypsum with abundant organic matter reprecipitated into phreatic channels (Sorbas) or veins of sulphur related to gypsiferous karsts (Podolia, Sicily) lend support to this idea.
Studies of the solution-erosion of gypsum have been performed by physical methods (tablets and M.E.M.) showing that the solution-erosion of gypsum within cavities is minimal (0.03 mm/ year) compared to that existing in the exterior (0.3 mm/year). The speleogenetic effect of condensation within the cavities has also been shown, with solution-erosion rates of 0.005 mm/year to be like the equivalent surface lowering. These data correspond to the karst in gypsum at Sorbas, where, additionally, a study about the time variation of the solution-erosion was carried out. It was found that the process is not continuous but clearly sporadic. During periods of torrential rain, the solution-erosion ranges from a weight loss of 400 mg/cm2/year on the surface of the karst to 75 mg/cm2/year inside the caves, while during the rest of the year the weight loss was barely 1 mg/cm2/year. The physical methods were compared with the results obtained from chemical methods, and it was found that, in general, higher values were obtained with the former (10-20% higher when weighted for the rainfall during the measuring periods). Thus it is reasonable to consider that the erosive process is more marked than was at first assumed.
In total, three cavity tracing experiments were carried out, all with fluoresceine, two of them in Cueva del Agua in Sorbas (during periods of high and low water levels) and the other in Tunel dels Sumidors in Vallada. At the first site, the comparison of the two tracing tests reveals a differential hydrodynamic behaviour of the cavity for the two contrasting situations; periods of high water input and periods of low rainfall. This behaviour is characteristic of well developed karstic aquifers, where the hydrodynamic effect of the circulation of water through small channels or, in this case, through the gypsiferous matrix and interbedded marly layers, seems to be more important under conditions of low hydraulic input than when rainfall is abundant. The two situations tested seem to confirm that the Cueva del Agua system, an epikarstic aquifer, which is representative of karstification in gypsum, has scarce retentive power and so large volumes of precipitation are totally discharged via the spring within a few days. However, the explanation of the small but continuous flow from the base of the cavity requires the inclusion of other factors in the interpretation. In this case, the flow seems to be fairly independent of rainfall and attributable to other processes, in addition to the previously described ones, such as the retentive power of the gypsiferous matrix and the marly interstrata. These might include the high degree of condensation measured over long periods, both on the surface of the karst in gypsum and within the cavities. In the case of the Tunel dels Sumidors, a highly irregular response was found, despite the fact that the coefficient of dispersivity was found to be 0.4. This value is similar to that obtained for the karst in gypsum at Sorbas in response to low water conditions, and so, here too, one might assume the influence of greater than expected flow-retaining processes, between the entry and exit points. Doubtless the karstic system of the Tunel dels Sumidors is more complex than was initially expected and in fact, the irregularity reflected by the fluoresceine concentration curve over time implies the existence of other factors to explain the diversity of the relative maxima obtained. Firstly, the presence of numerous Triassic clay intercalations might delay the flow, in addition to retaining a certain quantity of fluoresceine by ionic exchange. There is also a possibility that the flow is dispersed through a network of small conduits and pores, due to the permeability of the gypsiferous matrix. Finally, we cannot discount the possible existence of a deep-level input which, in this case, would be responsible for the variation in the flow and the chemical composition. This set of suppositions, as a whole, would explain the fact that the response of the spring to tracing is so irregular, even though we cannot achieve a definition of the qualitative influence of each one on the hydrodynamics of the system.
In order to verify some of the above hypotheses, particularly those referring to the process of condensation within cavities, an experiment was designed, consisting of a microtracing test at some points where condensation had been detected within the Cueva del Agua at Sorbas. The test produced a range of condensation flow speed values of 0.2 to 30 cm/hour and shows that, in those sections where the presence of condensation flow is visually apparent, there is a rapid dispersion of the colourant. However, it also shows that at points where there is no apparent condensation the process also occurs, but at a lower rate of efficiency. The importance of condensation within cavities has two aspects; firstly, speleogenetic, with the development of solution forms (cupolas) and deposit forms (capillarity boxwork); and secondly, hydrogeological, as this is the reason why certain processes (strong changes in temperature and humidity, multiple routes of airflow exchange with the exterior) may in themselves constitute a hydraulic contribution, of slight importance, but sufficient to explain a large part of the base flow (0.2 - 0.8 L/s) of a whole cavity system such as the Cueva del Agua in semiarid conditions.
With the intention of completing the analyses carried out in various karsts in gypsum, instruments were installed in the Cueva del Agua at Sorbas to measure, by continuous registration, some important physico-chemical parameters that might provide additional data on the hydro-geologic behaviour of this gypsiferous karst, especially at the level of the epikarstic zone. The parameters of temperature and water conductivity were considered most important, due to their singular behaviour patterns. During the experiment there were two periods of rainfall that modified the chemistry of the cavity, one of 30 mm in two days and another of 200 mm (almost the annual total) in four days. In the second case, which was much more extreme, a very significant increase in water temperature (up to 7 °C during the initial period of high water flow) was detected, while conductivity fell. But suddenly, when the minimum conductivity was reached, the temperature dropped sharply by 6-7 °C to return to the base temperature of the cavity. Subsequently, the temperature again stabilized at about 7 °C above the data recorded during the dry period. This behaviour pattern was not detected when the rainfall was slight. The explanation for this dual behaviour observed is fundamentally based on the quantity of rainfall and on the differences between the exterior air temperature, the temperature of interstitial water and the temperature recorded in the spring during high water flow. When water temperature in the cavity during high water flow is higher than the base temperature recorded in the period immediately before, it means that the interstitial water does not mobilize. However, when at any time the two temperatures coincide, one might suppose that there might have existed a process of mobilization of the water previously resident in the rock, by a piston effect, but in the unsaturated zone. On the other hand, the temporal variations of these parameters during the months following periods of high rainfall have enabled us to detect the existence of distinct periods during the return to normal cavity conditions. By carefully examining the decrease curve of water temperature inside the cavity while conductivity regained its maximum stable value, two periods may be differentiated. The first may be termed the "inertial influence period", when the rainfall occurring removes all signs of natural variation in the cavity. Thus, the daily external influences are not clearly detectable and the curve is downward-sloping and asymptotic with no significant oscillations. In the second period, which ends with the total stabilization of the parameter at the level of the initial conditions, the asymptotic descent is seen to be affected by daily temperature variations. This is termed the "inertial recovery period", during which external variations start to have an effect on the interior of the cavity such that there is a progressive increase in the amplitude of the daily variation in water temperature, air temperature and relative humidity. This behaviour pattern of variation of these parameters during periods of high rainfall, might be extended to all karstic systems, varying only in magnitude and temporal extent.


Facies differentiation and sequence stratigraphy in ancient evaporite basins - An example from the basal Zechstein (Upper Permian of Germany), 1999,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Steinhoff I. , Strohmenger C. ,
Due to excellent preservation, the Werra Anhydrite (Al), the upper member of the Upper Permian Zechstein cycle I (Ist cycle, Z1), is readily studied in terms of the distribution of sulfate facies and sequence stratigraphy that can be interpreted from these facies. In this study cores taken from seven wells in the Southern Zechstein Basin were examined for their sedimentary structures and various petrographic features. Facies interpretation and depositional sequences are based on detailed examination of core material. Four main facies environments have been identified: (I) supratidal (II) intertidal (III) shallow subtidal, and (IV) deeper (hypersaline) subtidal. These are further subdivided into 10 subfacies types: (1) karst and (2) sabkha within the supratidal environment (I), (3) algal tidal-flat, (4) tidal flat and (5) beach deposit within the intertidal environment (II), (6) salina, and (7) sulfate arenites within the shallow subtidal enviromnent (III). The (8) slope subfacies type commonly associated with (9) turbidites and the (10) basin subfacies type subdivide the deeper subtidal environment (IV). Vertical stacking patterns of these facies and subfacies types reveal the sequence stratigraphic development of the sulfate cycles in response to sea-level and salinity fluctuations. The lower Werra Anhydrite (belonging to Zechstein Sequence ZS2) is characterized by a transgressive systems tract (IST) overlying the transgressive surface of Zechstein Sequence ZS2 within the Al-underlying upper Zechstein Limestone (Cal). The TST of the AT is several tens of meters thick in platform areas, where it is built up by sulfate arenites and swallow-tail anhydrite-after-gypsum, and thins out to a few meters of thickness toward the condensed basinal section, where laminites ('Linien-Anhydrit') are predominant. Most of the Al succession consists of three relatively thick parasequences belonging to the highstand systems tract (HST) that shows typical prograding sets. Enhanced platform Buildup, including sulfate arenites, salina deposits, intertidal sediments, and sabkha precipitation as well as turbidite shedding off the platforms produced marginal ''sulfate walls' up to 400 m thick as platform to slope portions of the Werra Anhydrite. Seaward, the Al thins to a few tens of meters of laminated sulfate basin muds. Increasingly pronounced Al topography during highstand narrowed the slope subfacies belt parallel to the platform margin This contrasts with the broad but considerably thinner slope deposits of transgressive times with much shallower slopes. The ensuing sea-level lowstand is reflected by a sequence boundary on top of the karstified Al-platform and a lowstand wedge (Zechstein Sequence ZS3) overlying portions of the slope and basinal subfacies of the Al highstand systems tract Beyond the lateral limits of the lowstand wedge, the sequence boundary merges with the transgressive surface of ZS3, shown by the lithologic change from the Al anhydrites to the overlying carbonates of the Stassfurt Carbonates ('Haupt Dolomit' Main Dolomite, Ca2). The Basal Anhydrite (A2), which overlies and seals the carbonate reservoir of the Ca2, can also be subdivided into systems tracts by means of facies analysis. It is, however, much less complex than the Al and is comprised almost exclusively of a transgressive systems tract of Zechstein Sequence ZS4

Results 16 to 30 of 170
You probably didn't submit anything to search for