MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_left.php on line 5
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That tectonic cave is a cave formed by some form of ground movement. the most common is due to landsliding in a jointed rock, leaving an open fissure cave parallel to the line of the hillside along the back of the slipped block. tectonic caves can form in any rock, as they do not depend on dissolution. well known examples are the windypit fissures of north-east yorkshire, england some of which are hundreds of meters long and up to 60m deep [9].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_right.php on line 7
What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for chemical-composition (Keyword) returned 25 results for the whole karstbase:
Showing 16 to 25 of 25
Existence of karsts into silicated non-carbonated crystalline rocks in Sahelian and Equatorial Africa, hydrogeological implications, 2002,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Willems Luc, Pouclet Andre, Vicat Jean Paul,
Various cavities studied in western Niger and South Cameroon show the existence of important karstic phenomena into metagabbros and gneisses. These large-sized caves resulted from generalized dissolution of silicate formations in spite of their low solubility. Karstification is produced by deep hydrous transfer along lithological discontinuities and fracture net works. The existence of such caves has major implications in geomorphology, under either Sahelian and Equatorial climate, and in hydrogeology and water supply, particularly in the Sahel area. Introduction. - Since a few decades, several karst-like morphologies are described in non-carbonated rocks (sandstones, quartzites, schistes, gneisses...) [Wray, 1997 ; Vicat and Willems, 1998 ; Willems, 2000]. The cave of Guessedoundou in West Niger seems to be due to a large dissolution of metagabbros. The cave of Mfoula, South Cameroon, attests for the same process in gneisses. This forms proof that big holes may exist deeper in the substratum even of non-carbonated silicate rocks. Their size and number could mainly influence the landscape and the hydrogeology, especially in the Sahelian areas. Guessedoundou, a cave into metagabbros in West Niger. - The site of Guessedoundou is located 70 km south-west of Niamey (fig. 1). The cave is opened at the top of a small hill, inside in NNE-SSW elongated pit (fig. 2 ; pl. I A). The hole, 3 to 4 m deep and 20 m large, has vertical walls and contains numerous sub-metric angular blocks. A cave, a few meters deep, comes out the south wall. Bedrocks consist of metagabbros of the Makalondi greenstone belt, a belt of the Palaeoproterozoic Birimian Formations of the West Africa craton [Pouclet et al., 1990]. The rock has a common granular texture with plagioclases, partly converted in albite and clinozoisite, and pyroxenes pseudomorphosed in actinote and chlorite. It is rather fairly altered. Chemical composition is mafic and poorly alkaline (tabl. I). A weak E-W schistosity generated with the epizonal thermometamorphism. The site depression was created along a N010o shear zone where rocks suffered important fracturation and fluid transfers, as shown by its silification and ferruginisation. The absence of human activity traces and the disposition of the angular blocks attest that the pit is natural and was due to the collapse of the roof of a vast cavity whose current cave is only the residual prolongation. To the vertical walls of the depression and at the cave entry, pluridecimetric hemispheric hollows are observed (pl. I B). Smooth morphology and position of these hollows sheltered within the depression dismiss the assumptions of formation by mechanical erosion. In return, these features are typical shape of dissolution processes observed into limestone karstic caves. That kind of process must be invoked to explain the opening of the Guessedoundou cave, in the total lack of desagregation materials. Dissolution of metagabbro occurred during hydrous transfer, which was probably guided by numerous fractures of the shear zone. Additional observations have been done in the Sirba Valley, where similar metabasite rocks constitute the substratum, with sudden sinking of doline-like depressions and evidence of deep cavities by core logging [Willems et al., 1993, 1996]. It is concluded that karstic phenomena may exist even in silica-aluminous rocks of crystalline terrains, such as the greenstones of a Precambrian craton. Mfoula a cave into gneisses in South Cameroon. - The cave of Mfoula is located 80 km north-east of Yaounde (fig. 3). It is the second largest cave of Cameroon, more than 5,000 m3, with a large opening in the lower flank of a deep valley (pl. I C). The cavity is about 60 m long, 30 m large and 5 to 12 m high (fig. 4; pl. I D). It is hollowed in orthogneisses belonging to the Pan-African Yaounde nappe. Rocks exhibit subhorizontal foliation in two superposed lithological facies: the lower part is made of amphibole- and garnet-bearing layered gneisses, and the upper part, of more massive granulitic gneisses. Average composition is silico-aluminous and moderately alkaline (tabl. I). The cave is made of different chambers separated by sub-cylindrical pillars. The ceiling of the main chamber, 6 m in diameter, is dome-shaped with a smooth surface (D, fig. 4). The walls have also a smooth aspect decorated with many hemispherical hollows. The floor is flat according to the rock foliation. They are very few rock debris and detrital fragments and no traces of mechanical erosion and transport. The general inner morphology is amazingly similar to that of a limestone cave. The only way to generate such a cavity is to dissolve the rock by water transfer. To test the effect of the dissolution process, we analysed a clayey residual sampled in an horizontal fracture of the floor (tabl. I). Alteration begins by plagioclases in producing clay minerals and in disagregating the rock. However, there is no more clay and sand material. That means all the silicate minerals must have been eliminated. Dissolution of silicates is a known process in sandstone and quartzite caves. It may work as well in gneisses. To fasten the chemical action, we may consider an additional microbial chemolitotrophe activity. The activity of bacteria colonies is known in various rocks and depths, mainly in the aquifer [Sinclair and Ghiorse, 1989 ; Stevens and McKinley, 1995]. The formation of the Mfoula cave is summarized as follow (fig. 5). Meteoric water is drained down along sub-vertical fractures and then along horizontal discontinuities of the foliation, particularly in case of lithological variations. Chemical and biological dissolution is working. Lateral transfers linked to the aquifer oscillations caused widening of the caves. Dissolved products are transported by the vertical drains. Regressive erosion of the valley, linked to the epeirogenic upwelling due to the volcano-tectonic activity of the Cameroon Line, makes the cavities come into sight at the valley flanks. Discussion and conclusion. - The two examples of the Guessedoundou and Mfoula caves evidence the reality of the karsts in non-carbonated silicated rocks. The karst term is used to design >> any features of the classical karst morphology (caves, dolines, lapies...) where dissolution plays the main genetical action >> [Willems, 2000]. Our observations indicate that (i) the karst genesis may have occurred into any kind of rocks, and (ii) the cave formation is not directly dependent of the present climate. These facts have major consequences to hydrogeological investigations, especially for water supply in Sahelian and sub-desertic countries. Some measurements of water transfer speed across either sedimentary pelitic strata of the Continental terminal or igneous rocks of the substratum in West Niger [Esteves and Lenoir, 1996 ; Ousmane et al., 1984] proved that supplying of aquifers in these silico-aluminous rocks may be as fast as in a karstic limestone. That means the West Niger substratum is highly invaded by a karstic net and may hidden a lot of discontinuous aquifers. The existence of this karst system can be easily shown by morphological observations, the same that are done in karstic limestone regions (abnormally suspended dry valleys, collapses, dolines...). Clearly, this must be the guide for any search of water, even in desertic areas where limestones are absent

Mine water tracing, 2002,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Wolkersdorfer Christian,
This paper describes how tracer tests can be used in flooded underground mines to evaluate the hydrodynamic conditions or reliability of dams. Mine water tracer tests are conducted in order to evaluate the flow paths of seepage water, connections from the surface to the mine, and to support remediation plans for abandoned and flooded underground mines. There are only a few descriptions of successful tracer tests in the literature, and experience with mine water tracing is limited. Potential tracers are restricted due to the complicated chemical composition or low pH mine waters. A new injection and sampling method ( LydiA'-technique) overcomes some of the problems in mine water tracing. A successful tracer test from the Harz Mountains in Germany with Lycopodium clavatum, microspheres and sodium chloride is described, and the results of 29 mine water tracer tests indicate mean flow velocities of between 0.3 and 1.7 m min-1

Factors controlling the chemical evolution of travertine-depositing rivers of the Barkly karst, northern Australia, 2002,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Drysdale Rn, Taylor Mp, Ihlenfeld C,
Groundwaters feeding travertine-depositing rivers of the northeastern segment of the Barkly karst (NW Queensland, Australia) are of comparable chemical composition, allowing a detailed investigation of how the rate of downstream chemical evolution varies from river to river. The discharge, pH, temperature, conductivity and major-ion concentrations of five rivers were determined by standard field and laboratory techniques. The results show that each river experiences similar patterns of downstream chemical evolution, with CO2 outgassing driving the waters to high levels of calcite supersaturation, which in turn leads to widespread calcium carbonate deposition. However, the rate at which the waters evolve, measured as the loss of CaCO3 per kilometre, varies from river to river, and depends primarily upon discharge at the time of sampling and stream gradient. For example, Louie Creek (Q = 0.11 m(3) s(-1)) and Carl Creek (Q = 0.50 m(3) s(-1)) have identical stream gradients, but the loss of CaCO3 per kilometre for Louie Creek is twice that of Carl Creek. The Gregory River (Q = 3.07 m(3) s(-1)), O'Shanassy River (Q = 0.57 m(3) s(-1)) and Lawn Hill Creek (Q = 0.72 m(3) s(-1)) have very similar gradients, but the rate of hydrochemical evolution of the Gregory River is significantly less than either of the other two systems. The results have major implications for travertine deposition: the stream reach required for waters to evolve to critical levels of calcite supersaturation will, all others things being equal, increase with increasing discharge, and the length of reach over which travertine is deposited will also increase with increasing discharge. This implies that fossil travertine deposits preserved well downstream of modern deposition limits are likely to have been formed under higher discharge regimes. Copyright (C) 2002 John Wiley Sons, Ltd

EPMA and XRF characterization of therapeutic cave aerosol particles and their deposition in the respiratory system, 2002,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Alfoldy B, Torok S, Balashazy I, Hofmann W, Winklerheil R,
Cave therapy is an efficient therapeutic method to cure asthma, but the exact healing effect has not yet been clarified. This study was motivated by the basic assumption that aerosols may play a key role in cave therapy. Aerosol particles were collected in a therapeutic cave in Budapest, Hungary (Szemlohegyi cave) at different locations arranged for the therapeutic treatment. Samples were further analysed by EPMA and XRF for chemical composition and morphology, determining the particle number distribution and classifying them according to their elemental composition. Three particle classes were determined based on major element concentrations: aluminosilicate, quartz and calcium carbonate. The combination of single-particle EPMA and XRF resulted in relevant chemical information that could be used further for lung deposition modelling, namely the diameter and the number distribution to calculate the deposition probability, and the concentration of the element within a particle class necessary for the estimation of the deposited dose. The final results for the health effect study are the deposition efficiencies and deposition patterns of inhaled cave aerosols. The results of the stochastic deposition model showed that roughly 41% of the inhaled particles are deposited in the lung. From this amount, around 39% are deposited within airway generations 6-15, which is the most infected area in an asthmatic lung. The explanation of the healing effects might be based on the presented dose calculations. Copyright (C) 2002 John Wiley Sons, Ltd

The impact of hydrochemical boundary conditions on the evolution of limestone karst aquifers, 2003,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Romanov D. , Gabrovsek F. , Dreybrodt W. ,
The early evolution of karst aquifers depends on a manifold of initial and boundary conditions such as geological setting, hydrologic properties of the initial aquifer, and petrologic properties of the rock. When all water entering at various inputs into the aquifer has equal chemical composition with respect to the system H2O-CO2-CaCO3 early evolution under conditions of constant head exhibits breakthrough (BT) behaviour. If the chemical compositions of the input waters are different, deep in the aquifer where the saturated solutions mix renewed aggressiveness occurs, and additional dissolutional widening of fractures by mixing corrosion (MC) changes the hydrologic properties of the aquifer. To study the impact of MC on the evolution of karst we have modelled a simple karst aquifer consisting of a confined limestone bed, with two symmetrically located inputs at constant head and open flow conditions along the entire width at base level. To calculate dissolutional widening of the fractures the well-known dissolution kinetics of limestone was used, which is linear up to 90% of saturation with respect to calcite and then switches to a nonlinear fourth order rate law. First, two extremes are modelled: (a) Both inputs receive aggressive water of equal chemical composition with [Ca2] = 0.75[Ca2](eq). In this case two channels migrate downstream with that from one input more competitive and reaching base level first, causing BT. (b) Water at both inputs is saturated with respect to calcite, but in equilibrium with different partial pressures Of CO2. Therefore, dissolution widening can occur only where these waters mix. A central channel starts to grow extending down-head until base level is reached. Flow rates through the aquifer first rise and become constant after the channel has reached base level. In the following runs these two extreme modes of karstification are combined. The waters entering have different chemical compositions and therefore different equilibrium concentrations [Ca2](eq). This allows MC to be active. They are also undersaturated with the inflowing solutions at concentration [Ca2](in) = f[Ca2](eq) where f is the ratio of saturation. In comparison to the extreme limit (a) the action of MC now creates permeability where the solutions mix and diverts the evolution of conduits into this region. Finally one conduit reaches base level and causes BT. This behaviour is found for f = 0.7, 0.9, and 0.96. For solutions more close to equilibrium with respect to calcite (f = 0.99, 0.9925, and 0.995) BT behaviour is replaced by a steady increase in flow rates. In the early state as in the case of MC controlled evolution (case b) a central channel not connected to the input is created by MC and reaches base level. After this event, further increase in flow rates is caused by slow dissolutional widening by the slightly undersaturated input solutions flowing towards the central channel. Comparison of the various model aquifers at termination of the computer runs reveals significant differences in their properties caused solely by changes of the hydrochemical boundary conditions. (C) 2003 Elsevier Science B.V. All rights reserved

Numerical models for mixing corrosion in natural and artificial karst environments, 2003,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Kaufmann G. ,
[1] The enlargement of initially small fractures in a karst aquifer by chemical dissolution is studied. Flow in the aquifer is driven by head differences between sinks and resurgences, and flow depends on the permeability of small fissures and fractures in the aquifer. Enlargement of fractures is controlled by the chemical composition of the recharge, as water undersaturated with respect to calcite is able to dissolve material from the fracture walls. As fractures are enlarged with time, permeability within the aquifer increases significantly, and flow becomes very heterogeneous. Two different processes are considered: enlargement due to normal corrosion, where water is undersaturated with respect to calcite, and enlargement due to mixing corrosion, where two solutions saturated with respect to calcite but with different carbon dioxide concentrations mix and the resulting solution becomes undersaturated again. The importance of mixing corrosion is discussed for two boundary conditions: A natural karst aquifer is modeled with fixed recharge boundary conditions representing sinking streams, and an artificial karst aquifer is simulated with fixed head boundary conditions representing a reservoir. In both cases, mixing corrosion is important, especially if recharge is characterized by an almost saturated chemistry. Mixing corrosion significantly changes the evolving passage pattern, as dissolution due to mixing of solutions is possible deep in the aquifer. Mixing corrosion also reduces breakthrough times of the aquifer and can result in dramatic leakage underneath dam sites, even if the impounded water is almost saturated with respect to calcite

Heterogeneity of parent rocks and its constraints on geochemical criteria in weathering crusts of carbonate rocks, 2004,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Wang S. J. , Feng Z. G. ,
Owing to the low contents of their acid-insoluble components, carbonate rocks tend to decrease sharply in volume in association with the formation of weathering crust. The formation of a 1 m-thick weathering crust would usually consume more than ten meters to several tens of meters of thickness of parent rocks. The knowledge of how to identify the homogeneity of parent rocks is essential to understand the formation mechanism of weathering crust in karst regions. especially that of thick-layered red weathering crust. In this work the grain-size analyses have demonstrated that the three profiles studied are the residual weathering crust of carbonate rocks and further showed that there objectively exists the, heterogeneity of parent rocks in the three studied weathering crusts. The heterogeneity of parent rocks can also be. reflected in geochemical parameters of major elements, just as the characteristics of frequency plot of pain-size distribution. Conservative trace element ratios Zr/Hf and Nb/Ta are proven to be unsuitable for tracing the heterogeneity of parent rocks of weathering crust, but its geochemical mechanism is unclear. The authors strongly suggest in this paper that the identification of the homogeneity of parent rocks of weathering crust in karst regions is of prime necessity

Groundwater chemical composition changes in the Dubravsky Massif hydrogeological structure, induced by magnesite exploitation, 2004,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Bajtos P,
Exploited magnesite bodies of the Dubravsky Massif create parts of karst-fissure aquifer confined by Carboniferous metamorphic rocks of low fissure permeability. Extensive mining progress caused considerable changes in both groundwater circulation and groundwater chemical composition of the aquifer. A model of groundwater chemical composition genesis in such complicated conditions is presented in this paper. Saturation indices (SI) for chosen minerals were computed based on speciation modelling, which indicate oversaturation of groundwater with magnesite, dolomite, calcite, and undersaturation with gypsum in all saturated zone of karst-fissure aquifer. Statistical interpretations of hydrochemical data suppose that anthropogenically unaffected groundwater, where mineralisation is slightly altered by pyrite oxidation in dolomitic environment, represents hydrogeochemical background within the aquifer. It is supposed, that azonic acid, generated by condensation of nitrogen-rich gases freeing by blast-firings in mine, accelerate magnesite and dolomite dissolution. Produced groundwater types are of higher content of NO3, Mg and TIC in comparison with background values. Estimated acceleration of karstification processes due to underground mining is about 1.5 times. In spite of detected contamination, threshold values of drinking water standard, given by the Edict of the Slovak Ministry of Health Care No. 29 / 2002 Z. z. are not markedly exceeded for tested parameters. Future possible exploitation of studied aquifer after mining termination is not excluded

Conduit properties and karstification in the unconfined Floridan Aquifer, 2004,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Screaton E. , Martin J. B. , Ginn B. , Smith L. ,
Exchange of water between conduits and matrix is an important control on regional chemical compositions, karstification, and quality of ground water resources in karst aquifers. A sinking stream (Santa Fe River Sink) and its resurgence (River Rise) in the unconfined portion of the Floridan Aquifer provide the opportunity to monitor conduit inflow and outflow. The use of temperature as a tracer allows determination of residence times and velocities through the conduit system. Based on temperature records from two high water events, flow is reasonably represented as pipe flow with a cross-sectional area of 380 m(2), although this model may be complicated by losses of water from the conduit system at higher discharge rates. Over the course of the study year, the River Rise discharged a total of 1.9 x 10(7) m(3) more water than entered the River Sink, reflecting net contribution of ground water from the matrix into the conduit system. However, as River Sink discharge rates peaked following three rainfall events during the study period, the conduit system lost water, presumably into the matrix. Surface water in high flow events is typically undersaturated with respect to calcite and thus may lead to dissolution, depending on its residence time in the matrix. A calculation of local denudation is larger than other regional estimates, perhaps reflecting return of water to conduits before calcite equilibrium is reached. The exchange of matrix and conduit water is an important variable in karst hydrology that should be considered in management of these water resources

Halloysite clay minerals -- a review, 2005,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Joussein E. , Petit S. , Churchman J. , Theng B. , Righi D. , Delvaux B. ,
Halloysite clay minerals are ubiquitous in soils and weathered rocks where they occur in a variety of particle shapes and hydration states. Diversity also characterizes their chemical composition, cation exchange capacity and potassium selectivity. This review summarizes the extensive but scattered literature on halloysite, from its natural occurrence, through its crystal structure, chemical and morphological diversity, to its reactivity toward organic compounds, ions and salts, involving the various methods of differentiating halloysite from kaolinite. No unique test seems to be ideal to distinguish these 1:1 clay minerals, especially in soils. The occurrence of 2:1 phyllosilicate contaminants appears, so far, to provide the best explanation for the high charge and potassium selectivity of halloysite. Yet, hydration properties of the mineral probably play a major role in ion sorption. Clear trends seem to relate particle morphology and structural Fe. However, future work is required to understand the possible mechanisms linking chemical, morphological, hydration and charge properties of halloysite

Results 16 to 25 of 25
You probably didn't submit anything to search for