MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_left.php on line 5
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That spring, underflow is a spring that is part of a distributary but which is at lower elevation and preferentially drains base flow. between it and an overflow spring there may be several underflow-overflow springs.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_right.php on line 7
What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for cavities (Keyword) returned 281 results for the whole karstbase:
Showing 16 to 30 of 281
Karstic residual fluorite-baryte deposits at two localities in Derbyshire, 1983,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Shaw R. P. ,
Various karst processes may rework primary mineralization producing secondary ore deposits in a variety of karstic cavities both on the surface and underground. Two surface localities, on Bonsall Moor, near Matlock, and near Castleton are filled with sediments containing locally derived fluorite and baryte clasts, in sufficient quantity to be worked as ore deposits. The associated clastic sediments are of Pleistocene fluvioglacial origin

Formes de relief pseudokarstiques sur Mars, 1985,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Battistini, R.
PSEUDOKARST LANDFORMS ON MARS - There are many morphologic features on Mars looking like karstic features, principally in aeolian, glacio-eolian and volcanic formations: etch-pitted terrain, sinkholes aligned along fractures, sinuous alignments of large cavities similar to megadolines, etc. Some of these features are probably collapse features, and some others probably thermokarstic features but it is difficult to understand exactly the process of their genesis, in some cases very different from the process of terrestrial morphologic features. We may evoke the possibility of an underground karst on Mars.

Une morphologie karstique typique en zone intertropicale : les karsts du Bas Zare, 1985,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Quinif, Y.
A TYPICAL MORPHOLOGY OF TROPICAL KARSTS: THE KWILU BASIN IN THE LOWER-ZAIRE - The Kwilu basin, in the region of Bas-Zaire, shows typical landscapes of tropical karsts: cone and tower karsts shaped in precambrian limestones of the "Groupe schisto-calcaire". These precambrian series are little tectonised. They are covered with cenozoic formations which are important in the evolution of the karst. Different types of cavities are studied and replaced in the morphostructural context: old caves, originating in phreatic zone and now cut by the erosion, river streams in tunnel-caves, network under the water table. The superficial forms are interpreted as successive evolutive steps: dissection of a surface (morphological or structural) by a dendritic hydrographic network, birth of a cone-karst being transformed in tower-karst overlooking a new surface. We insist on the morphogenetic importance of the paleoclimatic changes and on the existence of an intertropical karstic morphology in stable craton.

Les cavits de la Sierra d'Aralar (Pays Basque espagnol), 1986,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Ugarte, F. M.
CAVES OF THE SIERRA OF ARALAR (NAVARRA-GUIPUZCOA, SPAIN). CORRELATION BETWEEN UNDERGROUND FORMATIONS AND GEOLOGICAL STRUCTURES - The study of numerous cavities of the Sierra of Aralar permits to give importance to: 1/ the relations between the subterranean morphology and the structural network; 2/ the relations with the actual morphoclimatic conditions of the middle-mountain exokarst; 3/ the part of the heritages of the Quaternary cold-periods. Following important speleological research carried out by the Aranzadi Society of Science (San Sebastian) in the central mountains of the sierra d'Aralar the majority of the PKH (Karst phenomenons) have been located and mapped (PKH = 2,78 km2). As a result of this work, we have attempted to correlate endokarstic landscape with geological structure

Subsidence and foundering of strata caused by the dissolution of Permian gypsum in the Ripon and Bedale areas, North Yorkshire, 1986,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Cooper Ah,
Underground dissolution of thick gypsum beds in the Edlington Formation and Roxby Formation of the Zechstein sequence in North Yorkshire, England, has resulted in a 3 km-wide and 100 km-long belt of ground susceptible to foundering. Within this belt a large subsidence depression at Snape Mires, near Bedale, was largely filled with lacustrine deposits in the later part of the Late Devensian and during the Flandrian. South of Snape Mires the Nosterfield-Ripon-Bishop Monkton area has suffered about 40 episodes of subsidence in the past 150 years, and the presence of several hundred other subsidence hollows indicates considerable activity from the later part of the Devensian onwards. The linear and grid-like arrangement of these subsidence hollows indicates collapse at intersections in a joint-controlled cave system. Linear subsidence features at Snape Mires are also joint-controlled. The transition from anhydrite at depth to secondary gypsum near surface marks the down-dip limit of the subsidence-prone belt. Cavities are propagated upwards by roof collapse of caverns in the gypsum, leading to the formation of breccia pipes. Choking of the pipes can reduce the surface expression of the underground collapse, but the larger cavities are liable to produce pipes that reach the surface even at the eastern boundary of the 3 km-wide belt described. Further subsidence in the Ripon area is predicted and some suggestions for remedial measures are given

Observations prliminaires sur les cavits de la rgion du lac Centrum (NE Groenland), 1987,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Loubiere, J. F.
CAVES OF CENTRUM LAKE AREA (NE GREELAND) - In 1983, M.Chiron, G.Favre, J-F. Loubire and J-P. Ttard identified a network of caves located in the extreme nord-east of Greenland. A cambro-silurian limestone zone stretches out to the south-west of Kronprins Christians land, the northern extremity of the great range of folded mountains of eastern Greenland. During an era characterised by the absence of permafrost and by a warmer climate favouring underground water circulation, these limestone formations were hollowed out by karstic river system. Such climatic conditions have long ceased to exist. During the major glaciations of the Quaternary period, the cavities were greatly modified. Glacier movements, cutting into the plateau, broke up the networks. The original underground deposits were then altered by allochtonous material of aeolian and morainic composition. Severe and ongoing frost shattering has added to this destructive process. It is hoped that this article will help to draw attention to these caves and to the more general subject of paleo-climates, especially their effects in the polar region during the Plio-Pleistocene transition (Electron Spin Resonance method on stalagmite and discovery of a mycelian hypha into calcite structure).

Les msaventures des sources de l'Estavelle et de l'Inversac en Languedoc Mditerranen, 1987,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Gze Bernard
The Estavelle and the Inversac are two celebrated springs in the Mediterranean Languedoc (South of France). Unfortunately, the first one has been chosen as a type for the karstic cavities alternatively absorbing or discharging the waters, according to the season, which has never been the case. On the opposite, the second one can be taken as model for this alternation as swallow hole or emergence.

Geophysical mapping techniques in environmental planning, 1987,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Culshaw Mg, Jackson Pd, Mccann Dm,
Geophysical information can be used to identify geological features, some of which may be a problem during the planning, design or construction of a new development. The location of magnetic dykes, the investigation of buried channels, or of landslips, the determination of the thickness of drift deposits or the identification of natural or man-made cavities are all problems which can be studied by geophysical surveying methods on both a regional or local scale. The information obtained can then be incorporated into factual or interpreted engineering geological maps for use by planners or engineers. In this paper, the contribution that geophysical surveying methods can make at the planning, design, construction and monitoring stages of a development is examined and illustrated with a number of case histories

Subsidence hazard prediction for limestone terrains, as applied to the English Cretaceous Chalk, 1987,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Edmonds Cn, Green Cp, Higginbottom Ie,
Soluble carbonate rocks often pose a subsidence hazard to engineering and building works, due to the presence of either metastable natural solution features or artificial cavities. There is also an inherent danger to the public and lives have been lost because of unexpected ground collapses. Although site investigation techniques are becoming increasingly elaborate, the detection of hazardous ground conditions associated with limestones is frequently difficult and unreliable. Remedial measures to solve subsidence problems following foundation failure are expensive. It would be advantageous if areas liable to subsidence could be identified in a cost-effective manner in advance of planning and ground investigation. Hazard mapping could then be used by planners when checking the geotechnical suitability of a proposed development or by engineering geologists/geotechnical engineers to design the type of ground investigation best suited to the nature and scale of the potential hazard. Recent research focussed on the English Chalk outcrop has led to the development of two new models to predict the subsidence hazard for both natural solution features and artificial cavities. The predictive models can be used to map the hazard at any given chalkland locality, as a cost-effective precursor to ground investigation. The models, although created for the Chalk outcrop, have important implications for all types of limestone terrain. The basis of the predictive modelling procedure is an analysis of the spatial distribution of nearly 1600 natural solution features, and more than 850 artificial cavity locations, identified from a wide varietyy of sources, including a special appeal organized by CIRIA. A range of geological, hydrogeological and geomorphological factors are evaluated to identify significant relationships with subsidence. These factors are ranked, numerically weighted and incorporated into two quantitative subsidence hazard model formulae. The models can be applied to perform hazard mapping

Pile foundation problems in Kuala Lumpur Limestone, Malaysia, 1987,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Bergado Dt, Selvanayagam An,
The geology and karstic nature of the Kuala Lumpur (Malaysia) limestone are described in relation to pile foundation problems of heavily loaded structures. The presence of cavities, pinnacles, cantilever slabs, floating slabs and pockets of soft silty clay and loose sand in the underlying limestone bedrock presents formidable challenges to foundation engineers. Other problems include insufficient seating and damage to pile tips due to irregular and sloping bedrock surfaces. There is also the added difficulty of detecting the location and extent of cavities. Empirical design methods and local construction techniques have been successfully used such as: (i) bridging limestone cavities and slabs by filling with concrete, (ii) utilizing numerous small diameter high yield stress piles to distribute the loads and to withstand high driving stresses, (iii) filling cavities with concrete, and (iv) using micropiles to redistribute the loads. Two case histories are presented, consisting of an access ramp and a tall building. In each of these case histories, the soil investigation methods, the pile bearing capacity calculations, the selection of pile types, the pile load tests, the pile driving criteria, and construction problems are outlined and discussed. The pile foundation used consisted of H-section, high yield stress, 355 x 368 mm, driven steel piles with capacities of 750 kN to 1280 kN for the access ramp structures and the same H-section steel piles with pile capacities of 965 kN to 1070 kN for the tall building

Natural and artificial cavities as ground engineering hazards, 1987,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Culshaw Mg, Waltham Ac,
The occurrences of natural and artificial cavities are reviewed and their causes are assessed. Natural cavities are found principally in carbonate rocks and the processes of sinkhole formation are described. Solution cavities in non-carbonate rocks and cavities in insoluble rocks are also considered. Extraction methods for coal, metalliferous minerals and salts are described in relation to the creation of underground cavities. An outline procedure for locating cavities emphasizes the importance of the desk study in this type of investigation and the difficulty of proving the absence of cavities beneath a site

The use of geophysical surveying methods in the detection of natural cavities and mineshafts, 1987,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Mccann D. M. , Jackson P. D. , Culshaw M. G. ,
The use of geophysical methods for the location of cavities and mineshafts is reviewed in relation to engineering problems at the site investigation stage. Their success is limited by the resolution and penetration achieved by the particular method applied in a given situation. It is shown that no one single geophysical method will provide the answer to all the problems associated with cavity location but considerable improvement can be achieved by the application of several methods to a given problem. It is suggested that for most standard geophysical methods it is possible to detect a cavity whose depth of burial is less than twice its effective diameter. The concept of effective diameter is shown to be of considerable importance since the presence of the cavity or mineshaft does affect the physical properties of the surrounding rock mass and, hence, gives rise to a far larger anomalous zone than that produced by the cavity on its own

Le karst nivernais : aperu gomorphologique et hydrogologique, 1989,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Couturaud A. , Orange A.
The Nivre karst: geomorphologic and hydrogeologic considerations - Western part of Burgundy and southern part of the Paris basin, the Nivernais karst takes from both regions their lithologic and structural features: Middle and Upper Jurassic carbonate formations, monocline structure with horsts and grabens. But its particularity is in the thick superficial formations, that are supporting a wide mantle of forest, and that determine its morphology, its hydrodynamic and its hydrochemistry. The karst area is distinguished by closed depressions and by the abundance of valleys. The penetrable cavities are scarce and of a little extension, and are principally underground streams. The study of the hydrodynamic and the chemistry of some springs have shown the complexity and the variability of the dynamic of the karstic systems that depends essentially on the superficial formations.

Land subsidence in the AI-Dahr residential area in Kuwait: a case history study, 1990,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Airifaiy Ia,
Four cylindrical sinkholes occurred between April 1988 and June 1989 in a residential area located 27 km south of Kuwait City. The physiographic and geological conditions of their development and the methods of survey followed to detect potential subsurface cavities in the area are discussed. The major sinkhole is 15 m in diameter and 31 m deep; the others are a few metres in size. A mechanism of migrating sinkholes is suggested, where the upper elastic sediments have been moved down into cavities of the underlying Dammam Limestone. Such movement could have been triggered by garden irrigation and urbanization. A conceptual model is introduced to explain the mechanism of this subsidence. Microgravity techniques were applied using a La Coste Model-D gravimeter to detect areas of subsurface weakness. Negative anomalies in the order of 80 microgals were recorded and considered to indicate underground cavities or zones of contrasted mass-deficiencies representing high risk areas. Moderate anomalies were also recorded and attributed to poor compaction of the ground prior to construction

La karstification de l'le haute carbonate de Makatea (Polynsie franaise) et les cycles eustatiques et climatiques quaternaires, 1991,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Dessay J. , Pouchan Y. , Girou A. , Humbert L. , Malezieux J.
THE KARST 0F MAKATEA ISLAND (FRENCH POLYNESIA) AND THE CLIMATIC AND GLACIO-EUSTATISM SETTING - Located in the Central Pacific, in the northwestern part of the Tuamotu Archipelago, Makatea island (148 15 W - 15 50 S) is an uplifted, karstic, carbonate construction of Early Miocene age, which reaches 113m in height. From 1906 to 1966, phosphate deposits were exploited on Makatea Island. These phosphate deposits (apatite) overlaid the Miocene series and filled the karstic cavities in the higher regions of the island. Several traces of ancient shorelines can be observed on Makatea: 1/ three different reef formations, which reach about +27m, +7m, +1m above the present mean sea level and respectively dated 400,000 100,000 yr BP, 140,000 30,000 yr BP, between 4,470 150 yr BP and 3,720 13O yr BP; 2/ four distinct marine notch lines on the Early Miocene cliff at about +1m, +7m, +27m and +56m (or +47m on the west coast caused by tilt) above the present mean sea level; 3/ two exposed marine platforms respectively at +29m and +7m above the present mean sea level. The ages of the former makatean shores are inferred by using: (1) the Pacific glacio-eustatic sea-level curve for the last 140,000 yr BP, (2) the Pacific oxygen isotope curve for the last 900,000 yr BP, and (3) a constant uplift rate during the Pleistocene. In this way, according to their age and elevation, the sea-level indicators at about +1m, +7m and +27m (+29m) above the present mean sea level can be respectively related to the Holocene transgression (Flandrian) dated between 6,000 and 1,500 yr BP, to the last Pleistocene interglacial period (Sangamon) dated between about 130,000 and 110,000 yr BP, and to a Middle Pleistocene interglacial period (Yarmouth) dated between about 315,000 and 485,000 yr BP. If we assume that a sea level similar to the present occurred during the Yarmouth inter-glacial period, the uplift rate is valued at 0.085 mm/yr to 0.056 mm/yr. Thus the sea-level associated with the marine notch at about +56m (+47m) may be about 650,000 yr to 1 M.y. old and can be associated with another Pleistocene interglacial period (Aftonian). Consequently, as indicated by the former shores, the sea level fluctuations can be related to the major glacio-eustatic quaternary events. This climatic and eustatic setting is used to explain the karst observed on the Makatea island. Carbonate dissolution and essentially vertical karst genesis were the result of the superposition of several cycles. Each cycle was initially composed of a solution of the carbonates during an interglacial period, followed by a drainage of the saturated solutions during the marine regression associated with the consecutive glacial period. Nevertheless, this scheme is not enough to explain the specific morphology of the makatean karstic cavities and we suggest using insular phosphatisation to explain this karst genesis. It is generally accepted that phosphate rock deposits on coral reef islands are the result of chemical reaction between seabird guano and reef limestone. Furthermore, petrographic and stable isotope studies suggest several generations of phosphorite formation and reworking episodes in the history of these deposits. The primary deposition of phosphates must have begun during a glacial period. This deposition was followed by some redistribution of phosphorites during the interglacial period and by additional precipitation of apatite from meteoric waters. This assumed process of phosphogenesis is consistent with both the field observations and the geodynamic evolution of Makatea. Thus, the particular morphology of the makatean karst can be the result of the dissolution of the carbonates caused by phosphoric acid etching. This acid is derived from the evolution of the phosphorites during the pleistocene interglacial periods.

Results 16 to 30 of 281
You probably didn't submit anything to search for