MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_left.php on line 5
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That discharge hydrograph is a graph showing the discharge of water as a function of time [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_right.php on line 7
What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for cavity (Keyword) returned 177 results for the whole karstbase:
Showing 166 to 177 of 177
Electrical resistivity surveys of anthropogenic karst phenomena, southeastern New Mexico, 2012,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Land L. , Veni G.

A small but significant number of sinkholes and other karst phenomena in southeastern New Mexico are of human origin and are often associated with solution mining of salt beds in the shallow subsurface. In 2008 two brine wells in a sparsely populated area of northern Eddy County, New Mexico, abruptly collapsed as a result of solution mining operations. The well operators had been injecting fresh water into underlying salt beds and pumping out brine for use as oil field drilling fluid. A third brine well within the city limits of Carlsbad, New Mexico, has been shut down to forestall possible sinkhole development in this more densely populated area. Electrical resistivity surveys conducted over the site of the brine well confirm the presence of a large, brine-filled cavity beneath the we0llhead. Laterally extensive zones of low resistivity beneath the well site represent either open cavities and conduits caused by solution mining or highly fractured and/or brecciated, brine-saturated intervals that may have formed by sagging and collapse into underlying cavities. The data also indicate that significant upward stoping has occurred into overlying strata.


Electrical Tomography Applied to the Detection of Subsurface Cavities, 2013,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Martineslpez J. , Rey J. , Dueas J. , Hidalgo C. , Benavente J.

We have analyzed the geoelectric response produced by three cavities cut into different geological substrata of granite, phyllite, and sandstone that had previously been characterized by direct methods. We also examined a mining void excavated in granite. In each case, we applied three different geoelectric arrays (Wenner-Schlumberger, Wenner and dipole-dipole) and several inter-electrode spacings. The survey results suggest that electrical resistivity tomography is a viable geophysical tool for the detection and monitoring of mining voids and other subsurface cavities. The results vary depending on a wide range of factors, such as the depth and diameter of the cavity, the multi-electrode array used, the inter-electrode spacing, the geological model, and the density of the data. The resolution capacity of the Wenner- Schlumberger array for the detection of these cavities was greater than that of the Wenner array and slightly better than the dipole-dipole. There is a direct relationship between inter-electrode spacing and diameter of the cavity. In general, we observed a loss of resolution as the distance between the electrodes increased. The most efficient detection was achieved when the inter-electrodes distance was less than or equal to the diameter of the cavity itself. In addition, cavity detection became increasingly less precise with its depth beneath the surface. Cavities with a radius of about 1.5 m were located by both the Wenner- Schlumberger method and the dipole-dipole at depths of more than 4.6 m, which means that prospecting can be carried out at depths 3 times the radius of the cavity.


High Resolution Seismic Reflection Methods to Detect Near Surface Tuff-Cavities: A Case Study in the Neapolitan Area, Italy, 2013,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Di Firoe V. , Angelino A. , Passaro S. , Bonanno A.

 

The Neapolitan region of Italy is plagued by the presence of shallow manmade cavities in lithoid tuffs that cause problems for communities because they produce building damages and loss of human lives. A high resolution P-wave seismic-reflection technique was successfully used to define a cavity 6 m by 10 m in horizontal dimensions and with a height of about 6 m located in a tuff layer 10 to 19 m below ground level. Such a cavity was located at Afragola (near Naples) where the local geology is typical of the Neapolitan area. The seismic dataset was acquired by using end-on spread geometry, with 0.25 m spacing for shots and 0.5 m for receivers. The application of band–pass filtering (30–150 Hz) allowed us to remove incoherent noise from the data, while an additional equivalent slope (Vs21) of 0.005 s m21 cut in the FK transform results in ground-roll noise removal. Both the acquisition and processing methods have been necessary to investigate and define the shape and dimensions of the targeted cavity


HYPOGENE SPELEOGENESIS AND SPELEOTHEMS OF SIMA DE LA HIGUERA CAVE (MURCIA, SOUTH-EASTERN SPAIN), 2013,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Gá, Zquez Fernando Calaforra José, Marí, A

 

Sima de la Higuera Cave (Pliego, south-eastern Spain) has been recently adapted for speleological use. Nevertheless, knowledge of the hypogenic origin of this cavity is still quite limited. The peculiar genetic mechanisms could provide added value if the cave is exploited for speleotourism. By studying geomorphological features and speleothem characteristics, it has been possible to deduce the predominant speleogenetic mechanism (whether hypogenic or epigenic) that controlled the evolution of this cave. The hypogenic mechanism that gave rise to this cavity was associated with upflow of CO2-rich hydrothermal fluid from depth, and was unconnected to meteoric water seepage. In this paper we describe some of the geomorphological evidence and unusual speleothems in Sima de la Higuera Cave. Large scallops are found on the upper level (-74 m); these are related to the mechanism of hypogenic speleogenesis and generally indicate the direction of ascending flow. There are also corrosion crusts made of micritic calcite. In addition, bubble trails related to bubbles of rising CO2 have been identified. Centimetric calcite spar speleothems frequently fill fractures in the host rock. Other typical hypogenic speleothems occur in this cave, including calcite raft cones, folia, cave clouds, tower coral and calcite raft deposits, all suggesting the influence of thermal water during the cave’s formation. Furthermore, the first reported occurrence of calcite raft double-tower cones has been described in this cave; their origin is linked to water table oscillations in Paradise Chamber (-82 m). At the deepest level (-110 m), Mn-Fe oxyhydroxides occur as a black coating totally covering the cave walls, usually over subaerial “boxwork” formations. The wide variety of speleothems unconnected to meteoric water seepage make Sima de la Higuera Cave one of the most unusual hypogenic caves in Spain.


Karst Sinkholes Stability Assessment in Cheria Area, NE Algeria, 2013,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Yacine Azizi, Med. Ridha Menani, Med Laid Hemila, Abderahmane Boumezbeur

 

Karst; Rock Mass Rating (RMR);Sinkhole collapse; Tebessa This research work deals with the problem of karst sinkhole collapse occurring in the last few years in Cheria area (NE Algeria). This newly revealed phenomenon is of a major constrain in land use planning and urbanization, it has become necessary to locate and assess the stability of these underground features before any planning operation. Several exploration methods for the localization of underground cavities have been considered. Geological survey, discontinuity analysis, resistivity survey [ground penetrating radar has not been used as most of the Mio-Plio-Quaternary filling deposit covering Eocene limestone contains clay layers which limits the applicability of the method (Roth et al. in Eng Geol 65:225–232, 2002)] and borehole drilling were undertaken in order to locate underground cavities and assess their depth, geometry, dimensions, etc. Laboratory testing and field work were also undertaken in order to determine both intact rock and rock mass properties. All the rock mechanics testing and measurement were undertaken according to the ISRM recommendations. It has been found that under imposed loading, the stability of the karst cavities depends on the geo-mechanical parameters (RMR, Rock Mass Rating; GSI, Geological Strength Index; E, Young modulus) of the host rock as well as the depth and dimensions of the gallery. It increases with RMR, GSI, E and depth and decreases as the cavity becomes wider. Furthermore, the calculation results show that a ratio (roof thickness to gallery width) of 0.3 and more indicate, a stable conditions. The results obtained in this work allow identifying and assessing the stability of underground karst cavities. The methodology followed in this paper can be taken as a road map in the establishment of a hazard map related to the studied phenomenon. This map will be a useful tool for the future urban extension planning in Cheria area.


PER ASCENSUM CAVE MORPHOLOGIES IN THREE CONTINENTS AND ONE ISLAND, INCLUDING PLACES WHERE THEY SHOULDN’T OCCUR, 2014,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Osborne, R. A. L.

Hypogene or per-ascensum, whatever you prefer to call them, caves that form from the bottom up have a great range of patterns in plan, large cavity morphology and an expanding, but specific suite of speleogens that distinguish them from fluvial caves formed by descending surface water. Once thought to be rare and unusual, caves or sections of caves with plans, large cavities and suites of “hypogene” speleogens are turning up in situations traditionally thought to have fluvial or even glacial origin. The role of condensation corrosion in the formation of cavities and speleogens remains controversial, but surprisingly some insights may come for processes in salt mines. Phantom rock formation and removal and similar processes involving removal of dolomitized bedrock, de-dolomitized bedrock, and almost trace-free removal of palaeokarst raise problems of both temporal relationships and of how to distinguish between the outcomes of recent and ancient processes. The presence of “hypogene” speleogens in both gneiss and marble caves in Sri Lankan of unclear origin adds to the complexity. Back in the early 1990s, before hypogene caves were de-rigour, workers such as David Lowe were puzzling about speleo-inception, how caves begin. Perhaps the rare occurrences of solution pockets in joints in obvious fluvial caves, such as Postojna Jama, are indicating that many more caves than we imagine are actually multi-process and multiphase and that “hypogene” processes of various types are significant agents of speleo-inception.


Occurrence of diagenetic alunites within karst cavity infill of the Dammam Formation, Ahmadi, Kuwait: an indicator of hydrocarbon gas seeps, 2014,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Khalaf F. I. , Abdullah F. A.

Alunite minerals occur as white powdery lumps and laminated coloured deposits within cavity and solution channel infill of the palaeokarst zone of the Upper Eocene Dammam Formation. This formation is exposed in a quarry located on the Al Ahmadi ridge within the Greater Burgan oil field in southern Kuwait. Field occurrences and sedimentary structures of the alunite deposits were described. Collected samples were petrographically described, and their mineralogy and geochemistry were determined using X-ray diffraction and X-ray fluorescence, respectively. Microfabrics were investigated using SEM, revealing that they are primarily composed of fibrous alunogen (hydrous aluminium sulphate) and pseudo-cubical K-alunite (hydrous potassium aluminium sulphate). Their mode of occurrence suggests a hypogenetic origin, where sulphide gases associated with hydrocarbon gases reacted with an Al-rich solution leached from clay minerals and feldspars of the cavity-fill muddy sand sediments. The hydrocarbon gases may have seeped from subsurface petroliferous formations within the Greater Burgan oil field along vertical fractures. This study suggests that these acidic seeps may have played a role in the development of the palaeokarst zone of the Dammam Formation


Sinkholes, pit craters, and small calderas: Analog models of depletion-induced collapse analyzed by computed X-ray microtomography, 2014,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943

Volumetric depletion of a subsurface body commonly results in the collapse of overburden and the formation of enclosed topographic depressions. Such depressions are termed sinkholes in karst terrains and pit craters or collapse calderas in volcanic terrains. This paper reports the first use of computed X-ray microtomography (?CT) to image analog models of small-scale (~< 2 km diameter), high-cohesion, overburden collapse induced by depletion of a near-cylindrical (“stock-like”) body. Time-lapse radiography enabled quantitative monitoring of the evolution of collapse structure, velocity, and volume. Moreover, ?CT scanning enabled non-destructive visualization of the final collapse volumes and fault geometries in three dimensions. The results illustrate two end-member scenarios: (1) near-continuous collapse into the depleting body; and (2) near-instantaneous collapse into a subsurface cavity formed above the depleting body. Even within near-continuously collapsing columns, subsidence rates vary spatially and temporally, with incremental accelerations. The highest subsidence rates occur before and immediately after a surface depression is formed. In both scenarios, the collapsing overburden column undergoes a marked volumetric expansion, such that the volume of subsurface depletion substantially exceeds that of the resulting topographic depression. In the karst context, this effect is termed “bulking”, and our results indicate that it may occur not only at the onset of collapse but also during progressive subsidence. In the volcanic context, bulking of magma reservoir overburden rock may at least partially explain why the volume of magma erupted commonly exceeds that of the surface depression.


A multi-method approach for speleogenetic research on alpine karst caves. Torca La Texa shaft, Picos de Europa (Spain), 2014,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943

Speleogenetic research on alpine caves has advanced significantly during the last decades. These investigations require techniques from different geoscience disciplines that must be adapted to the methodological constraints of working in deep caves. The Picos de Europa mountains are one of the most important alpine karsts, including 14% of the World’s Deepest Caves (caves with more than 1 km depth). A speleogenetic research is currently being developed in selected caves in these mountains; one of them, named Torca La Texa shaft, is the main goal of this article. For this purpose, we have proposed both an optimized multi-method approach for speleogenetic research in alpine caves, and a speleogenetic model of the Torca La Texa shaft. The methodology includes: cave surveying, dye-tracing, cave geometry analyses, cave geomorphological mapping, Uranium series dating (234U/230Th) and geomorphological, structural and stratigraphical studies of the cave surroundings. The SpeleoDisc method was employed to establish the structural control of the cavity. Torca La Texa (2,653 m length, 215 m depth) is an alpine cave formed by two cave levels, vadose canyons and shafts, soutirage conduits, and gravity-modified passages. The cave was formed prior to the Middle Pleistocene and its development was controlled by the drop of the base level, producing the development of the two cave levels. Coevally to the cave levels formation, soutirage conduits originated connecting phreatic and epiphreatic conduits and vadose canyons and shafts were formed. Most of the shafts were created before the local glacial maximum, (43-45 ka) and only two cave passages are related to dolines developed in recent times. The cave development is strongly related to the structure, locating the cave in the core of a gentle fold with the conduits’ geometry and orientation controlled by the bedding and five families of joints.


Occurrence of diagenetic alunites within karst cavity infill of the Dammam Formation, Ahmadi, Kuwait: an indicator of hydrocarbon gas seeps, 2014,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943

Alunite minerals occur as white powdery lumps  and laminated coloured deposits within cavity and solution  channel infill of the palaeokarst zone of the Upper Eocene  Dammam Formation. This formation is exposed in a quarry  located on the Al Ahmadi ridge within the Greater Burgan oil  field in southern Kuwait. Field occurrences and sedimentary  structures of the alunite deposits were described. Collected  samples were petrographically described, and their mineralogy  and geochemistry were determined using X-ray diffraction  and X-ray fluorescence, respectively. Microfabrics were investigated  using SEM, revealing that they are primarily composed  of fibrous alunogen (hydrous aluminium sulphate) and  pseudo-cubical K-alunite (hydrous potassium aluminium sulphate).  Their mode of occurrence suggests a hypogenetic  origin, where sulphide gases associated with hydrocarbon  gases reacted with an Al-rich solution leached from clay  minerals and feldspars of the cavity-fill muddy sand sediments.  The hydrocarbon gases may have seeped from subsurface  petroliferous formations within the Greater Burgan oil  field along vertical fractures. This study suggests that these  acidic seeps may have played a role in the development of the  palaeokarst zone of the Dammam Formation.


Inland notches: Implications for subaerial formation of karstic landforms —An example from the carbonate slopes of Mt. Carmel, Israel, 2015,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943

Inland notches are defined herein as horizontal “C”-shaped indentations, developed on the carbonate slopes or cliffs in the Mediterranean to semi-arid zones. The notches are shaped like half tubes that extend over tens or hundreds of meters along the stream valley slopes. In Mt. Carmel, a series of 127 notches have been mapped. On average, their height and width are 2–2.5mbut they can reach 6min height and 9.5min width. The geomorphic processes that create a notch combine chemical,mechanical, and biogenicweathering,which act together to generate initial dissolution and later flakeweathering (exfoliation) of the bed, forming the notch cavity.We propose an epikarstic-subaerial mechanism for the formation and evolution of the notches. The notches are unique landforms originating fromthe dissolution and disintegration of the rock under subaerial conditions, by differentialweathering of beds with different petrographic properties. The notches follow specific beds that enable their formation and are destroyed by the collapse of the upper bed. The formation and destruction alternate in cyclical episodes and therefore, the notches are local phenomena that vary over time and space


Calculating flux to predict future cave radon concentrations, 2016,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Rowberry Matt, Marti Xavi, Frontera Carlos, Van De Wiel Marco, Briestensky Milos

Cave radon concentration measurements reflect the outcome of a perpetual competition which pitches flux against ventilation and radioactive decay. The mass balance equations used to model changes in radon concentration through time routinely treat flux as a constant. This mathematical simplification is acceptable as a first order approximation despite the fact that it sidesteps an intrinsic geological problem: the majority of radon entering a cavity is exhaled as a result of advection along crustal discontinuities whose motions are inhomogeneous in both time and space. In this paper the dynamic nature of flux is investigated and the results are used to predict cave radon concentration for successive iterations. The first part of our numerical modelling procedure focuses on calculating cave air flow velocity while the second part isolates flux in a mass balance equation to simulate real time dependence among the variables. It is then possible to use this information to deliver an expression for computing cave radon concentration for successive iterations. The dynamic variables in the numerical model are represented by the outer temperature, the inner temperature, and the radon concentration while the static variables are represented by the radioactive decay constant and a range of parameters related to geometry of the cavity. Input data were recorded at Driny Cave in the Little Carpathians Mountains of western Slovakia. Here the cave passages have developed along splays of the NE-SW striking Smolenice Fault and a series of transverse faults striking NW-SE. Independent experimental observations of fault slip are provided by three permanently installed mechanical extensometers. Our numerical modelling has revealed four important flux anomalies between January 2010 and August 2011. Each of these flux anomalies was preceded by conspicuous fault slip anomalies. The mathematical procedure outlined in this paper will help to improve our understanding of radon migration along crustal discontinuities and its subsequent exhalation into the atmosphere. Furthermore, as it is possible to supply the model with continuous data, future research will focus on establishing a series of underground monitoring sites with the aim of generating the first real time global radon flux maps.


Results 166 to 177 of 177
You probably didn't submit anything to search for