MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_left.php on line 5
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That phreatic water is that part of the underground water in a karst limestone which lies within the zone of permanently saturated rock - the phreatic zone. caves formed within this zone are known as phreatic caves [19].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_right.php on line 7
What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for bedrock (Keyword) returned 272 results for the whole karstbase:
Showing 271 to 272 of 272
Sulfuric acid speleogenesis (SAS) close to the water table: Examples from southern France, Austria, and Sicily, 2015,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943

Caves formed by rising sulfuric waters have been described from all over the world in a wide variety of climate  settings, from arid regions to mid-latitude and alpine areas. H2S is generally formed at depth by reduction of  sulfates in the presence of hydrocarbons and is transported in solution through the deep aquifers. In tectonically  disturbed areas major fractures eventually allow these H2S-bearing fluids to rise to the surface where oxidation  processes can become active producing sulfuric acid. This extremely strong acid reacts with the carbonate  bedrock creating caves, some of which are among the largest and most spectacular in the world. Production of  sulfuric acid mostly occurs at or close to the water table but also in subaerial conditions in moisture films and  droplets in the cave environment. These caves are generated at or immediately above the water table, where  condensation–corrosion processes are dominant, creating a set of characteristic meso- and micromorphologies.  Due to their close connection to the base level, these caves can also precisely record past hydrological and  geomorphological settings. Certain authigenic cave minerals, produced during the sulfuric acid speleogenesis  (SAS) phase, allow determination of the exact timing of speleogenesis. This paper deals with the morphological,  geochemical and mineralogical description of four very typical sulfuric acid water table caves in Europe: the  Grotte du Chat in the southern French Alps, the Acqua Fitusa Cave in Sicily (Italy), and the Bad Deutsch Altenburg  and Kraushöhle caves in Austria


Sinkholes, collapse structures and large landslides in an active salt dome submerged by a reservoir: The unique case of the Ambal ridge in the Karun River, Zagros Mountains, Iran, 2015,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943

Ambal ridge, covering 4 km2, is a salt pillowof Gachsaran Formationwith significant salt exposures in direct contact  with the Karun River, Zagros Mountains. The highly cavernous salt dome is currently being flooded by the  Gotvand Reservoir, second largest in Iran. Geomorphic evidence, including the sharp deflection of the Karun  River and defeated streams indicate that Ambal is an active halokinetic structure, probably driven by erosional  unloading. Around 30% of the salt dome is affected by large landslides up to ca. 50 × 106 m3 in volume. Slope  oversteepening related to fluvial erosion and halokinetic rise seems to be the main controlling factor. A total of  693 sinkholes have been inventoried (170 sinkholes/km2), for which a scaling relationship has been produced.  The depressions occur preferentially along a belt with a high degree of clustering. This spatial distribution is  controlled by the proximity to the river, slope gradient and halite content in the bedrock. A large compound  depression whose bottom lies below the normal maximum level of the reservoir will likely be flooded by  water table rise forming a lake. The impoundment of the reservoir has induced peculiar collapse structures  220–280 m across, expressed by systems of arcuate fissures and scarps. Rapid subsurface salt dissolution is  expected to generate and reactivate a large number of sinkholes and may reactivate landslideswith a significant  vertical component due to lack of basal support.


Results 271 to 272 of 272
You probably didn't submit anything to search for