MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_left.php on line 5
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That anisotropy is the condition of having different properties in different directions [22].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_right.php on line 7
What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for dolomite (Keyword) returned 290 results for the whole karstbase:
Showing 31 to 45 of 290
Two generations of karst-fill sedimentary rocks within Chuniespoort Group dolomites south of Pretoria, 1987,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Wilkins C. B. , Eriksson P. G. , Van Schalkwyk A. ,

Caves and other features of Permian karst in San Andres dolomites, Yates field reservoir. West Texas, 1987,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Craig D. H.

Deposition of Tufa on Ryans and Stockyard Creeks, Chillagoe Karst, North Queensland: The Role of Evaporation, 1987,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Dunkerley, D. L.

A spring which feeds Ryans and Stockyard Creeks west of Cillagoe, was examined in order to understand the circumstances producing extensive deposits of tufa in the stream channels. The spring water was found to be of considerable hardness (300 ppm total carbonates) and to emerge only very slightly supersaturated with respect to calcium carbonate, but undersaturated with respect to dolomite. Both saturation levels rose very rapidly during the first 150 m of subaerial flow, as did pH and water temperature. In contrast to the reported behaviour of other limestone springs, carbonate hardness at this site does not decrease monotonically downstream, but rather locally undergoes significant increases. In particular, magnesium hardness at 1 km downstream is more than 4 times its value at the spring. These phenomena are explained in terms of evaporative concentration of the dissolved carbonates and in terms of possible chemical changes associated with the mixture of waters having contrasting characteristics at channel and pool sites along the streams.


Caves and other features of Permian karst in San Andres dolomite, Yates Field reservoir, west Texas, 1988,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Craig D. H.

Prsentation des principales cavites du Causse de Laissac-Sverac (Aveyron), 1990,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Rigal, C.
PRESENTATION OF THE MAIN CAVES OF THE CAUSSE OF LAISSAC-SEVERAC (AVEYRON, FRANCE) - The causse of Laissac-Severac is situated between "Grands Causses" and "Causse of Sauveterre" (Aveyron), in limestones and dolomites of Lias and Middle Jurassic. This speleological area presents two kinds of karst systems: losses and resurgences at the contact of the crystalline massif (Levezou) on the south part (Clos del Pous = 3km), and caves with numerous sumps under the Causse of Severac on the north part (plateau with large depressions (Tantayrou = 3.1km). These caves are post-Miocene because of the dated volcanism; they cut an eogene paleokarst, which is characterised by ferralitic paleosoils (ferruginous sandstone called "Siderolithique") from the alteration of crystalline massif.

Yates and other Guadalupian (Kazanian) oil fields, U. S. Permian Basin, 1990,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Craig Dh,
More than 150 oil and gas fields in west Texas and southeast New Mexico produce from dolomites of Late Permian (Guadalupian [Kazanian]) age. A majority of these fields are situated on platforms or shelves and produce from gentle anticlines or stratigraphic traps sealed beneath a thick sequence of Late Permian evaporites. Many of the productive anticlinal structures are elongate parallel to the strike of depositional facies, are asymmetrical normal to facies strike, and have flank dips of no more than 6{degrees}. They appear to be related primarily to differential compaction over and around bars of skeletal grainstone and packstone. Where the trapping is stratigraphic, it is due to the presence of tight mudstones and wackestones and to secondary cementation by anhydrite and gypsum. The larger of the fields produce from San Andres-Grayburg shelf and shelf margin dolomites. Cumulative production from these fields amounts to more than 12 billion bbl (1.9 x 109 m3) of oil, which is approximately two-thirds of the oil produced from Palaeozoic rocks in the Permian Basin. Eighteen of the fields have produced in the range from 100 million to 1.7 billion bbl (16-271 x 106 m3). Among these large fields is Yates which, since its discovery in October 1926, has produced almost 1.2 billion bbl (192 x 106 m3) out of an estimated original oil-in-place of 4 billion bbl (638 x 106 m3). Flow potentials of 5000 to 20 000 bbl (800 to 3200 m3) per day were not unusual for early Yates wells. The exceptional storage and flow characteristics of the Yates reservoir can be explained in terms of the combined effects of several geologic factors: (1) a vast system of well interconnected pores, including a network of fractures and small caves; (2) oil storage lithologies dominated by porous and permeable bioclastic dolograinstones and dolopackstones; (3) a thick, upper seal of anhydrite and compact dolomite; (4) virtual freedom from the anhydrite cements that occlude much porosity in other fields which are stratigraphic analogues of Yates; (5) unusual structural prominence, which favourably affected diagenetic development of the reservoir and made the field a focus for large volumes of migrating primary and secondary oil; (6) early reservoir pressures considerably above the minimum required to cause wells to flow to the surface, probably related to pressures in a tributary regional aquifer

Karst features of a glaciated dolomite peninsula, Door County, Wisconsin, 1990,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Johnson Scot B. , Stieglitz Ronald D. ,
A geologic investigation of the northern part of Door Peninsula, Wisconsin for a state funded water quality project revealed that karstification of the Silurian aquifer is more extensive than previously believed. Sinkholes and small insurgent features, solution modified crevices, pavements, caves and springs were inventories and mapped. These features are generally smaller and less densely developed than those in most limestone terranes; however, they are important to the geomorphology and water quality of the peninsula.Continental glaciation has strongly influenced both the distribution and the present surface morphology of the karst features. Ice scour has formed a stepped bedrock topography, contributed to pavement formation and may have removed some preglacial features. Deposition has plugged and masked features in places. In addition, subglacial water circulation, and ice loading and unloading may have influenced karst development

Paleomagnetism of the Cambrian Royer Dolomite and Pennsylvanian Collings Ranch Conglomerate, southern Oklahoma; an early Paleozoic magnetization and nonpervasive remagnetization by weathering, 1990,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Nick Kevin E. , Elmore R. Douglas,

IMPACT OF PAST SEDIMENT ECOLOGY ON ROCK FRACTURATION AND DISTRIBUTION OF CURRENT ECOSYSTEMS (JURA, FRANCE), 1991,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Gaiffe M, Bruckert S,
Differences in the fracture type of limestone rocks have resulted in the formation of several main plant soil ecosystems in the montane and subalpine zones of the Jura (800-1 700 m). The sites were on stable landscape with slope < 5%. Locations were chosen to reflect the variation in physical properties of the bedrock and lithic contact. The rock fractures (densities and size), the shape and size of the fragments and the hydraulic conductivities were described and analyzed to characterize the 3 main bedrocks in the area studied (table 1): 1), lapiaz, ie, large rock fragments separated from each other by wide fractures (figs 1-2), 'broken' rocks traversed by numerous fine fractures (fig 2-3), paving-stones crossed by infrequent narrow fractures (fig 3). The effects of rock fracturing on vegetation (table II) and soil formation were significant in reference to porosity and permeability relationships (figs 6-7). Under similar precipitation, meteoric waters flow through the soil and porosity is relative to fracture systems (figs 4, 5). The weathering of cobbles in the soil profiles and along the lithic contacts maintains different soil solution Ca levels and is an important variable in soil and ecosystem formation (table III). Regarding the regional orogenic phases and the tectonic origin of the fractures, we postulate that the different types of fracturation originated from the different chemical and mineralogic composition of the rocks. Significant differences exist in both the calcite and dolomite content, in the insoluble residue content (table IV) and in the percentage of organic matter of the carbonate-free residues (table V, fig 8). The results indicate that the differences in rock composition arose early at about the period of sedimentation. The origin of the differentiation might be due to the sedimentation conditions and environment (fig 9). It is concluded that the present-day plant soil ecosystems may be related to the marine sediment environments of the Jurassic period (fig 10)

Peace River Arch Wabamun Dolomite, tectonic or subaerial karst?, 1991,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Workum R. H. ,

DIAGENESIS AND MINERALIZATION PROCESSES IN DEVONIAN CARBONATE ROCKS OF THE SIDING-GUDAN LEAD-ZINC MINERAL SUBDISTRICT, GUANGXI, SOUTHWEST CHINA, 1991,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Schneider W. , Geng A. Q. , Liu X. Z. ,
The lead-zinc ore deposits of the Siding-Gudan mineral subdistrict Guangxi are part of the large Nanling district of South China, and hosted in Devonian carbonate rocks. The ore bodies occur significantly along main faults and fault zones, and concentrate up to 300 meters above the Cambrian/Devonian unconformity. Connected with hydrothermal karst, size and volume of the ore bodies increase in proximity to this unconformity. Moving from the unaffected host rocks to the center of the ore bodies, four zones can be discriminated by the mineral assemblage (pyrite, sphalerite, galena) as well as by the degree of ordering, Ca/Mg, and Fe/Mn ratios of different dolomites. Homogenization temperatures range from 80-100-degrees-C (Presqu'ile dolomite) to 230-260-degrees-C (massive sphalerite). The sulfides reveal delta-S-34 = -20 to parts per thousand, and fluid inclusions display a salinity of 5-12 wt % equivalent NaCl. The diagenetic and hydrothermal history is similar to that of classic Mississippi Valley Type (MVT) sulfide mineral deposits as, for example, Pine Point in Canada. Mineralization and remobilization of the sulfides took place during a wide time span from late Paleozoic through Mesozoic. Both processes are considered as an interaction of saline basinal brines ascended from the adjoining dewatering trough, and magmatic-hydrothermal fluids of several magmatic-tectonic events

LATE-STAGE DOLOMITIZATION OF THE LOWER ORDOVICIAN ELLENBURGER GROUP, WEST TEXAS, 1991,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Kupecz J. A. , Land L. S. ,
Petrography of the Lower Ordovician Ellenburger Group, both in deeply-buried subsurface cores and in outcrops which have never been deeply buried, documents five generations of dolomite, three generations of microquartz chert, and one generation of megaquartz. Regional periods of karstification serve to subdivide the dolomite into 'early-stage', which predates pre-Middle Ordovician karstification, and 'late-stage', which postdates pre-Middle Ordovician karstification and predates pre-Permian karstification. Approximately 10% of the dolomite in the Ellenburger Group is 'late-stage'. The earliest generation of late-stage dolomite, Dolomite-L1, is interpreted as a precursor to regional Dolomite-L2. L1 has been replaced by L2 and has similar trace element, O, C, and Sr isotopic signatures, and similar cathodoluminescence and backscattered electron images. It is possible to differentiate L1 from L2 only where cross-cutting relationships with chert are observed. Replacement Dolomite-L2 is associated with the grainstone, subarkose, and mixed carbonate-siliciclastic facies, and with karst breccias. The distribution of L2 is related to porosity and permeability which focused the flow of reactive fluids within the Ellenburger. Fluid inclusion data from megaquartz, interpreted to be cogenetic with Dolomite-L2, yield a mean temperature of homogenization of 85 6-degrees-C. On the basis of temperature/delta-O-18-water plots, temperatures of dolomitization ranged from approximately 60 to 110-degrees-C. Given estimates of maximum burial of the Ellenburger Group, these temperatures cannot be due to burial alone and are interpreted to be the result of migration of hot fluids into the area. A contour map of delta-O-18 from replacement Dolomite-L2 suggests a regional trend consistent with derivation of fluids from the Ouachita Orogenic Belt. The timing and direction of fluid migration associated with the Ouachita Orogeny are consistent with the timing and distribution of late-stage dolomite. Post-dating Dolomite-L2 are two generations of dolomite cement (C1 and C2) that are most abundant in karst breccias and are also associated with fractures, subarkoses and grainstones. Sr-87/Sr-86 data from L2, C1, and C2 suggest rock-buffering relative to Sr within Dolomite-L2 (and a retention of a Lower Ordovician seawater signature), while cements C1 and C2 became increasingly radiogenic. It is hypothesized that reactive fluids were Pennsylvanian pore fluids derived from basinal siliciclastics. The precipitating fluid evolved relative to Sr-87/Sr-86 from an initial Pennsylvanian seawater signature to radiogenic values; this evolution is due to increasing temperature and a concomitant evolution in pore-water geochemistry in the dominantly siliciclastic Pennsylvanian section. A possible source of Mg for late-stage dolomite is interpreted to be from the dissolution of early-stage dolomite by reactive basinal fluids

Subterranean Waterworks of Biblical Jerusalem: Adaptation of a Karst System, 1991,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Gill Dan,
Ancient Jerusalem has long been known to possess a system of subterranean waterworks by which the spring of Gihon, which issues outside the walls, could be approached from within the city, and its waters diverted to an intramural pool. Most scholars regarded these waterworks as man-made, but the techniques of underground orientation and ventilation employed by the builders, as well as the numerous anomalies and ostensible mistakes in design, mystified investigators. Geological investigation has revealed the waterworks to be part of a well-developed karst system, a network of natural dissolution channels and shafts, in the limestone and dolomite underlying the city. Thus, it was not through primary planning but by means of skillful adaptation of these pre-existing natural features that the city was ensured of a dependable water supply during both war and peace. Likewise, knowledge of the subterranean access may have played a role in David's capture of the Jebusite city

DOLOMITE-ROCK TEXTURES AND SECONDARY POROSITY DEVELOPMENT IN ELLENBURGER GROUP CARBONATES (LOWER ORDOVICIAN), WEST TEXAS AND SOUTHEASTERN NEW-MEXICO, 1991,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Amthor Je, Friedman Gm,
Pervasive early- to late-stage dolomitization of Lower Ordovician Ellenburger Group carbonates in the deep Permian Basin of west Texas and southeastern New Mexico is recorded in core samples having present-day burial depths of 1.5-7.0 km. Seven dolomite-rock textures are recognized and classified according to crystal-size distribution and crystal-boundary shape. Unimodal and polymodal planar-s (subhedral) mosaic dolomite is the most widespread type, and it replaced allochems and matrix or occurs as void-filling cement. Planar-e (euhedral) dolomite crystals line pore spaces and/or fractures, or form mosaics of medium to coarse euhedral crystals. This kind of occurrence relates to significant intercrystalline porosity. Non-planar-a (anhedral) dolomite replaced a precursor limestone/dolostone only in zones that are characterized by original high porosity and permeability. Non-planar dolomite cement (saddle dolomite) is the latest generation and is responsible for occlusion of fractures and pore space. Dolomitization is closely associated with the development of secondary porosity; dolomitization pre-and post-dates dissolution and corrosion and no secondary porosity generation is present in the associated limestones. The most common porosity types are non-fabric selective moldic and vuggy porosity and intercrystalline porosity. Up to 12% effective porosity is recorded in the deep (6477 m) Delaware basin. These porous zones are characterized by late-diagenetic coarse-crystalline dolomite, whereas the non-porous intervals are composed of dense mosaics of early-diagenetic dolomites. The distribution of dolomite rock textures indicates that porous zones were preserved as limestone until late in the diagenetic history, and were then subjected to late-stage dolomitization in a deep burial environment, resulting in coarse-crystalline porous dolomites. In addition to karst horizons at the top of the Ellenburger Group, exploration for Ellenburger Group reservoirs should consider the presence of such porous zones within other Ellenburger Group dolomites

Les mouvements tectoniques rcents dans les grottes du Monte Campo dei Fiori (Lombardie, Italie), 1992,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Bini A. , Quinif Y. , Sules O. , Uggeri A.
Recent tectonic movements have been studied in the caves of Monte Campo dei Fiori in Lombardy (Italy). These develop in limestones and dolomites ranging from the Lower Trias to the Lower Lias. In the Frassino cave, movements can be observed along the layers (shifts in galleries) as well as speleothems that have been broken and displaced. U/Th datings of speleothems indicate ages of more 350.000 years. Karstification therefore preceded neotectonic movements. On the whole, observations point out an increasing folding of the syncline of the Varese Lake, together with an uplift of the neighbouring anticlines.

Results 31 to 45 of 290
You probably didn't submit anything to search for