Search in KarstBase
![]() |
![]() |
The copepod crustacean fauna collected from subterranean habitats, including caves, wells, and the hyporheos of streams in and near the Interior Low Plateaus of the United States is dominated by Cyclopoida, with 39 species, followed by Harpacticoida with 9, and Calanoida with 2. Nearly all of the harpacticoid and calanoid species are widespread, primarily surface-dwelling generalists. Fourteen of the cyclopoids, members of the genera Diacyclops, Itocyclops, Megacyclops, and Rheocyclops, are apparently obligate stygobionts or hyporheic. Several of the species that are more strongly modified for subterranean existence occur only in the more southern, unglaciated areas. Our sampling data support the hypothesis that the more specialized, groundwater-interstitial species have been unable to disperse into previously glaciated regions; whereas some, less-specialized species may have invaded groundwaters from surface habitats as the glaciers receded.
Glaciospeleology is a science about caves in glaciers and other kinds of natural ice, their genesis and evolution. Subject and tasks of glaciospeleology, the brief history of glaciospeleology, the basic achievements and research possibilities are considered. Morphological similarity of caves in ice and in limestone, and also the short period of conduit formation and evolution in glaciers allow using objects of glaciological studying as natural models for limestone caves. It may allow to resolve many problems of karst cavities speleogenesis in the future. However it is necessary to take into account distinctions of caves in ice and limestone and to develop criteria of similarity of speleogenesis processes in these different rocks.
The occurrence of speleothems in New Zealand with reversed magnetism indicates that secondary calcite deposition in caves has occurred for more than 780 thousand years (ka). 394 uranium-series dates on 148 speleothems show that such deposition has taken place somewhere in the country with little interruption for more than 500 ka. A relative probability distribution of speleothem ages indicates that most growth occurred in mild, moist interglacial and interstadial intervals, a conclusion reinforced by comparing peaks and troughs in the distribution with time series curves of speleothem δ18O and δ13C values. The stable isotope time series were constructed using data from 15 speleothems from two different regions of the country. The greater the number of overlapping speleothem series (i.e. the greater the sample depth) for any one region, the more confidence is justified in considering the stacked record to be representative of the region. Revising and extending earlier work, composite records are produced for central-west North Island (CWNI) and north-west South Island (NWSI). Both demonstrate that over the last 15 ka the regions responded similarly to global climatic events, but that the North Island site was also influenced by the waxing and waning of regional subtropical marine influences that penetrated from the north but did not reach the higher latitudes of the South Island. Cooling marking the commencement of the last glacial maximum (LGM) was evident from about 28 ka. There was a mid-LGM interstadial at 23-21.7 ka and Termination 1 occurred around 18.1 ka. The glacial-interglacial transition was marked by a series of negative excursions in δ18O that coincide with dated recessional moraines in South Island glaciers. A late glacial cooling event, the NZ Late Glacial Reversal, occurred from 13.4-11.2 ka and this was followed by an early Holocene optimum at 10.8 ka. Comparison of δ18O records from NWSI and EPICA DML ice-core shows climatic events in New Zealand to lag those in Antarctica by several centuries to a thousand years. Waxing and waning of subantarctic and subtropical oceanic influences in the Tasman Sea are considered the immediate drivers of palaeoclimatic change.
Mountain glaciers and their sediments are prominent witnesses of climate change, responding sensitively to even small modifications in meteorological parameters. Even in such a classical and thoroughly studied area as the European Alps the record of Holocene glacier mass-balance is only incompletely known. Here we explore a novel and continuous archive of glacier fluctuations in a cave system adjacent to the Upper Grindelwald Glacier in the Swiss Alps. Milchbach cave became partly ice-free only recently and hosts Holocene speleothems. Four coeval stalagmites show consistent petrographic and stable isotopic changes between 9.2 and 2.0ka which can be tied to abrupt modifications in the cave environment as a result of the closing and opening of multiple cave entrances by the waxing and waning of the nearby glacier. During periods of Holocene glacier advances, columnar calcite fabric is characterized by 18O values of about 8.0 indicative of speleothem growth under quasi-equilibrium conditions, i.e. little affected by kinetic effect related to forced degassing or biological processes. In contrast, fabrics formed during periods of glacier minima are typical of bacterially mediated calcite precipitation within caves overlain by an alpine soil cover. Moreover, 18O values of the bacterially mediated calcite fabrics are consistent with a ventilated cave system fostering kinetic fractionation. These data suggest that glacier retreats occurred repeatedly before 5.8ka, and that the amplitudes of glacier retreats became substantially smaller afterwards. Our reconstruction of the Upper Grindelwald Glacier fluctuations agrees well with paleoglaciological studies from other sites in the Alps and provides a higher temporal resolution compared to traditional analyses of peat and wood remains found in glacier forefields.
The paper deals with the origin of caves in Sokola Hill (Polish Jura). the caves abound in solution cavities in the walls and ceilings, many of them arranged hierarchically, some others arranged in rising sets. blind chimneys and ceiling half-tubes are also present. these features collectively indicate that the caves originated under phreatic conditions by an ascending flow of water, probably of elevated temperature. Phreatic calcite spar, crystallized from water of elevated temperature, lines the cave walls. during the formation of the caves the Jurassic limestone aquifer was confined by impermeable cover. three possible scenarios for the origin of the caves are suggested. the first scenario points to formation of the caves during the Palaeogene prior to the removal of the confining cretaceous marls. the second connects the origin of the caves with regional palaeoflow driven by tectonic loading by carpathian nappes to the south, while the third refers to local topographically driven palaeoflow. both the second and third scenarios assume that the Polish Jura had a cover of Miocene impermeable clastics. All the scenarios account for the origin of the caves in Sokola Hill and explain the common occurrence of ascending caves throughout the Polish Jura.
In the subsequent stages of evolution the caves were partly filled with various deposits. conglomerates composed of Jurassic limestone clasts, quartz sands and sandstones are preserved as erosional remnants, locally covered by or interfingered with calcite flowstones. the clastic deposits were laid down by surface streams that invaded the caves earlier than 1.2 Ma. the caves were not invaded by water from Pleistocene glaciers, which is proved by the assemblage of heavy minerals in the cave clastics.
The cosmogenic exposure ages obtained from glacial landforms in several Turkish mountains provided a basis to reconstruct glacio-chronology and paleoclimate of Turkey. Glacier-related landforms occur in three major regions of Turkey; (1) the Taurus Mountains, along the Mediterranean coast and southeast Turkey, (2) mountain ranges along the Eastern Black Sea Region, and (3) volcanoes and independent mountain chains scattered across the Anatolian Plateau. 10Be 26Al and 36Cl ages show that the oldest and most extensive mountain glaciers were developed during the Last Glacial Maximum. Unusual Early Holocene glaciations, dated to 9 ka-10 ka, were also reported from Mount Erciyes and Aladaglar.
The processes of cave formation in glaciers are analogous to cave formation in limestone and form from the preferential enlargement of high permeability pathways that connect discrete recharge and discharge points. Cave enlargement in glaciers is driven by small amounts of heat produced by friction as water flows through these high permeability pathways. Because rates of ice melting are many orders of magnitude faster than rates of the dissolution of limestone, glacier caves can grow to humanly traversable diameters within time scales of days to weeks whereas limestone caves of equivalent dimensions require 105–106 years. Because glacier ice is deformable, ice caves are squeezed shut at rates that increase with ice thickness, with deep caves squeezing closed in a matter of days. Glacier cave formation is therefore a dynamic process reflecting competition between enlargement and creep closure. While some glacier caves are reused and continue to evolve from year to year, many glacier caves must form each melt season. The processes of cave formation in glaciers exert important control on subglacial water pressure and affect how fast glaciers flow from higher, colder elevations, to lower warmer elevations. Ice flow directly into the ocean and glacial melt generally are important contributions to sea-level rise. Glacier caves are common in all glaciers that experience significant surface melting.
Castleguard Cave is the longest cave system currently known in Canada (21 km) and the foremost example anywhere of a cavern extending underneath a modern glacier. It displays many striking features of interactions between glaciers and karst aquifers, a complex modern climate, rich mineralization, and a troglobitic fauna that has possibly survived one or more ice ages beneath deep ice cover in the heart of the Rocky Mountains.
Speleothems, mainly stalagmites, are yielding continuous, high-resolution records of past climate. Because calcite in these speleothems can be dated with exceptional accuracy, these records are matching and in some cases exceeding records from lakes, trees, glaciers, and oceans in their importance, and are providing remarkable detail about regional and global climate change history. Multiple records are offered and discussed in this article and show the significance of caves to the field of paleoclimatology.
![]() |
![]() |