MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_left.php on line 5
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That sub-conduit is any void, whether of tectonic or dissolutional origin, that is smaller than the accepted defined size of a conduit. sub-conduits originate under inception conditions and enlarge during gestation, but many fail to achieve larger dimensions when drainage later becomes concentrated along preferred routes. in most cases, however, they will continue to function as part of the micro-fissure, or percolation, system within the rock mass. sub-conduits are an essential part of a continuum of void sizes that extends between microscopic discontinuities and the largest tube passages [9].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_right.php on line 7
What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for zone (Keyword) returned 969 results for the whole karstbase:
Showing 31 to 45 of 969
Hydrology of carbonate rock terranes -- A review , : With special reference to the United States, 1969,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Stringfield V. T. , Legrand H. E. ,
Limestone and other carbonate rocks are characterized by many unusual features and extreme conditions, either involving the hydrologic system within them or wrought by hydrologic conditions on them or through them. Perhaps there could be little agreement as to what is typical or average for the many features of carbonate rocks, as indicated by the following conditions: bare rock and thin soils are common, but so are thick soils; very highly permeable limestones are common, but so are poorly permeable ones; and rugged karst topographic features with underlying solution caverns are common, but so are flat, nearly featureless topographic conditions. Some conditions of carbonate terranes are suitable to man's needs and interests, such as the use of some permeable aquifers for water supply and the exploitation of caves for tourist attractions. On the other hand, many problems may exist, including: permeability too low for adequate water supply or so high that the aquifer retains too little water for use during periods of fair weather, soils too thin for growing of crops and for adequate filtration of wastes near the ground surface, instability of the ground for buildings and foundations in sinkhole areas, and unusually rugged topography. Some of the many variable conditions are readily observable, but others can be determined only by careful geologic and hydrologic studies.The need for knowing the specific geologic and hydrologic conditions at various places in limestone terranes, as well as the variations in hydrologic conditions with changing conditions and time, has resulted in many published reports on local areas and on special topical problems of limestone hydrology. Many of these reports have been used to advantage by the present writers in preparing this paper.The concept that secondary permeability is developed by circulation of water through openings with the accompanying enlargement of these openings by solution is now universally accepted in limestone terranes. Emphasis is placed on the hydrogeologic framework, or structural setting, in relation to the ease or difficulty of water to move from a source of recharge, through a part of the limestone, to a discharge area. Parts of the limestone favored by circulating ground water tend to develop solution openings, commonly in the upper part of the zone of saturation; as base level is lowered (sea level or perennial stream level), the related water table lowers in the limestone leaving air-filled caverns above the present zone of saturation in sinkhole areas. Reconstruction of the geologic and hydrologic history of a limestone area aids in determining the extent of development and the positions of fossil and present permeability. References are made to the hydrology of many limestone regions, especially those of the United States

Vice-County Records of Fauna collected from the Hypogean and related zones, 1970,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Hazleton M.

The Origin and Development of Mullamullang Cave N37, Nullarbor Plain, Western Australia, 1970,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Hunt, G. S.

Mullamullang Cave N37 is the longest and most complex cave on the Nullarbor Plain, Southern Australia. Unlike the other caves, it possesses extensive levels of phreatic solution tube passages which permit stronger inferences to be made on the development of the collapse passages constituting the bulk of Mullamullang Cave and other deep Nullarbor caves. These passages have been formed by collapse through overlying belts of solution tube networks along an elongated zone of cavitation in the limestone. Massive breakdown was probably initiated at depth within the zone, at least 50 feet below the present watertable level. Upward stoping of the collapse would have been facilitated by the higher network levels in the zone, such as the Ezam and Easter Extension. Channelling of groundwater flow under the Plain is suggested by the belt-like nature of the networks. An epiphreatic origin is proposed for the network levels though convincing morphological evidence is wanting. Eustatic changes in sea level have been of fundamental importance in the development of the multiple levels. Wetter periods in the past were probably important as little development is taking place under present-day dry conditions. Correlation of wetter periods with Pleistocene glacials would help explain the development of huge collapse passages, but such correlatien cannot be assumed on present evidence. Massive collapse and doline formation were followed by subaerial weathering and vadose activity which modified the cave - especially near the entrance. Correlation of levels in Mullamullang with those in other Nullarbor deep caves is attempted. However, Mullamullang Cave is unique probably due to the lithology of the Abrakurrie Limestone in which it is developed.


Vice-County Records of Fauna collected from the Hypogean and related zones, 1971,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Hazleton M.

Trichoniscoides saeroeensis Lohmander, an Isopod Crustacean new to the British fauna., 1971,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Sheppard Edith M.
The terrestial isopod Trichoniscoides saeroeensis Lohmander, new to the British fauna, is recorded fram the dark zone of disused mines in Lancashire; the paper includes notes on its systematic position and certain morphological characters as well as its affinities. The origin and geographical distribution of the species, together with that of the other two species recorded in England [T. albidus (Budde-Lund) and T. sarsi Patience], is discussed.

Trichoniscoides saeroeensis Lohmander, an Isopod Crustacean new to the British fauna., 1971,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Sheppard Edith M.
The terrestial isopod Trichoniscoides saeroeensis Lohmander, new to the British fauna, is recorded fram the dark zone of disused mines in Lancashire; the paper includes notes on its systematic position and certain morphological characters as well as its affinities. The origin and geographical distribution of the species, together with that of the other two species recorded in England [T. albidus (Budde-Lund) and T. sarsi Patience], is discussed.

Cave Development during a Catastrophic Storm in the Great Valley of Virginia, 1971,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Doehring Do, Vierbuchen Rc,
Observations made before aind after a catastrophic storml support the conclutsion that caves receivinig storm recharge may be significantly developed in the vadose zone by the processes of niass transfer. These processes are greatly accelerated during times of major floods. Evidence indicates that in ancient times floods of similar magnitude have occurred

Seminar on Karst Denudation - Comparative morphogenetical study of Karst Regions in the Tropical and Temperate Zones, 1972,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Balazs D.

Chronology of the Black Sea over the last 25,000 years, 1972,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Degens Et, Ross Da,
Deep-water sediments of the Black Sea deposited during Late Pleistocene and Holocene time are distinguished by three sedimentary units: (1) a microlaminated coccolith ooze mainly consisting of Emiliania huxleyi; (2) a sapropel; and (3) a banded lutite. The base of the first unit lies at 3,000 years B.P., that of the second at 7,000 years B.P., and that of the third at least at about 25,000 years B.P. Fossils and geochemical criteria are used to decipher the environmental events of this time period. Beginning with the base of the section dated at about 25,000 years B.P. we witness the final stage of metamorphosis from anoxic marine to oxic freshwater conditions. By the time this stage ended, about 22,000 years B.P., the Black Sea had become a truly freshwater habitat. The lake phase lasted about 12,000 to 13,000 years. Sedimentation rates were in the order of 1 m/103 years, but began to decrease as sea level rose during the last 5,000 years of this phase (9,000-15,000 years B.P.). Starting at about 9,000 years B.P. and continuing to 7,000 years B.P., Mediterranean waters occasionally spilled over the Bosporus as a consequence of ice retreat and sea level rise. This marked the beginning of a gradual shift from freshwater to marine, and from well aerated to stagnant conditions. At about 7,000 years B.P. when deposition of unit 2 started, the H2S zone was well established. Sedimentation rates dropped to 10 cm/103 years. Environmental conditions similar to those of today finally became established around 3,000 years B.P., almost exactly the time when Jason and the Argonauts sailed through the Bosporus in search of the Golden Fleece

The Migration of Cave Arthropods Across The Nullarbor Plain, Southern Australia, 1972,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Richards, Aola, M.

The Nullarbor Plain is a low plateau of Tertiary limestone covering an area of 194,175 km2 in southern Australia. It has a semi-arid climate and supports a stunted vegetation. Ninety-five species of arthropods have been recorded from 47 Nullarbor caves, and many of these species are widely distributed across the Plain. Two possible explanations for their distribution are discussed. Subterranean migration may occur through the widespread zone of small interconnecting cavities in the Nullarbor Limestone, but this has not yet been confirmed. While cave arthropods are confined to the cool, moist cave environment during the day, they have been observed at night in cave entrances, in dolines and on the surface of the Plain. Cave "breathing", similarity in cave and epigean climate at night, strong winds, occasional heavy rain and numerous animal burrows all contribute towards favourable conditions for surface migration.


Observations on the aquatic subterranean fauna of Cuba., 1973,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Botosaneanu Lazare
A short account on some achievements of the cubano-romanian biospeleological expeditions to Cuba in the study of the aquatic subterranean faunas. The following divisions of the aquatic subterranean realm are reviewed together with their most characteristic faunal elements: "guano pools" and rimstone pools in the vadose zone of the caves; underground streams; water table (and other) lakes in the caves; "pozzos" carved in the limestone, and "grietas" which are vertical clefts in the limestone of marine terraces, giving access to fresh- or to brackish water; the interstitial of the marine beaches; the underflow of running waters. At present, thorough biospeleological research is being carried out almost everywhere in Central America; Cuba, which remained until recently rather poorly investigated, proves to be one of the most remarkable areas from this point of view. A few of the most interesting problems rose in the course of the study of the underground aquatic fauna of Cuba are listed. An interesting biogeographical problem is the following: some of the subterranean aquatic elements prove to be related to elements belonging to the fauna of the other Antilles and of Mexico, but not to the South-American fauna (as is the case for some terrestrial groups). The research undertaken will be a contribution to the problem of the divisions of the aquatic subterranean realm and of their reciprocal relations, in a warm and humid climate; it will also contribute an answer to the problem of the differences between temperate and tropical cave communities; finally, it allows one to perceive in its very progress the process of colonization of the subterranean freshwaters by elements of marine origin, either through the interstitial realm or through the fissures of the littoral limestones.

Observations on the aquatic subterranean fauna of Cuba., 1973,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Botosaneanu Lazare
A short account on some achievements of the cubano-romanian biospeleological expeditions to Cuba in the study of the aquatic subterranean faunas. The following divisions of the aquatic subterranean realm are reviewed together with their most characteristic faunal elements: "guano pools" and rimstone pools in the vadose zone of the caves; underground streams; water table (and other) lakes in the caves; "pozzos" carved in the limestone, and "grietas" which are vertical clefts in the limestone of marine terraces, giving access to fresh- or to brackish water; the interstitial of the marine beaches; the underflow of running waters. At present, thorough biospeleological research is being carried out almost everywhere in Central America; Cuba, which remained until recently rather poorly investigated, proves to be one of the most remarkable areas from this point of view. A few of the most interesting problems rose in the course of the study of the underground aquatic fauna of Cuba are listed. An interesting biogeographical problem is the following: some of the subterranean aquatic elements prove to be related to elements belonging to the fauna of the other Antilles and of Mexico, but not to the South-American fauna (as is the case for some terrestrial groups). The research undertaken will be a contribution to the problem of the divisions of the aquatic subterranean realm and of their reciprocal relations, in a warm and humid climate; it will also contribute an answer to the problem of the differences between temperate and tropical cave communities; finally, it allows one to perceive in its very progress the process of colonization of the subterranean freshwaters by elements of marine origin, either through the interstitial realm or through the fissures of the littoral limestones.

Irish Vice-County Records of Fauna from the Hypogean and related zones of Caves and Wells in Ireland, 1974,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Hazleton M.

Geology and hydrogeology of the El Convento cave-spring system, Southwestern Puerto Rico., 1974,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Beck Barry F.
Whereas the North Coast Tertiary Limestones of Puerto Rico are classic karst locales, their southern counterparts are almost devoid of karst development. The El Convento Cave-Spring System is the most prominent feature of the only large scale karst area developed on the South Coast Tertiary limestones. The karst topography is localized on the middle Juana Diaz Formation, which is a reef facies limestone, apparently because of the high density and low permeability of this zone as compared to the surrounding chalks and marls. In the El Convento System a sinking ephemeral stream combines with the flow from two perennial springs inside the cave. The surface drainage has been pirated from the Rio Tallaboa to the east into El Convento's subterranean course. The climate is generally semi-arid with 125-150 cm of rain falling principally as short, intense showers during Sept., Oct., and Nov. Sinking flood waters are absorbed by a small sinkhole and appear two to three hours later in the cave. In the dry season this input is absent. The two springs within the cave have a combined inflow to the system of 1.0 m3/min at low flow but half of this leaks back to the groundwater before it reaches the resurgence. The spring waters are saturated with CaCO3 and high in CO2 (26.4 ppm). As the water flows through the open cave it first becomes supersaturated by losing CO2 and then trends back toward saturation by precipitating CaCO3.

Ecological and Faunistic Data on the Stenasellidae (Crustacea Isopoda Asellota of Subterranean Waters)., 1974,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Magniez Guy
Some important morphological features, which are discussed here, point out that the Stenasellids (Crustacea Isopoda Asellota) must be considered as a true family (Stenasellidae), independent from the Asellidae. A definition and a renewed diagnosis of the Stenasellidae Dudich, 1924, are given. Their relationships must be pursued, especially in the marine Parastenetroidea and in the psammic Microcerberidae. Until 1938, the group was known only from subterranean waters of southern Europe. Now, several genera and many thermophile species from north-tropical underground waters have been discovered in Africa (5 gen., 12 sp.), Asia (1 gen., 2 sp.) and Central America (1 gen., 4 sp.). The Stenasellids are very active burrowers. Such a behaviour explains how their phyletic lines had colonized the continental underground waters, by migrations from the littoral gravels to the underflow of rivers, phreatic alluvial waters and fnally, to the karstic waters. The typical medium for the life of the group is represented by the phreatic zones of African shields arenas. In European phyletic lines, the speciation seems to be linked with tertiary subsidences (within the Tyrrhenian area, for the line of Stenasellus virei). The European species which have survived quaternary glaciations may have diversified themselves (rising of subspecies), recolonizing newly vacant biotopes in postglacial ages.

Results 31 to 45 of 969
You probably didn't submit anything to search for