MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_left.php on line 5
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That flow-mass curve is 1. a mass curve with runoff discharge as a hydrologic quantity [16]. 2. the integral of the curve of a hydrograph [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_right.php on line 7
What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for surface-water (Keyword) returned 60 results for the whole karstbase:
Showing 46 to 60 of 60
Assessment of direct transfer and resuspension of particles during turbid floods at a karstic spring, 2003,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Massei N. , Wang H. Q. , Dupont J. P. , Rodet J. , Laignel B. ,
Turbid water can be the source of important sanitary problems in karstic regions. It is the case of the Pays de Caux, in Haute Normandie, where the main resource in drinking water is provided by the chalk aquifer. In the case of the typical binary karst of the Pays de Caux, turbidity results from the input in sinkholes of turbid surface water induced by erosion on the plateaus. At some spring tappings, water may be very turbid in period of intense rainfall. The turbidity observed at a karstic spring is a complex signal which contains a part of direct transfer and a part of resuspension of the particles being transported. The aim of this study is turbidigraph separation, which would permit to distinguish the direct transfer and resuspension components of the turbidigraph. These two components are separated by comparing the elementary surface storm-derived water fluxes and elementary turbidity signals at the spring. The procedure takes place in three phases: (i) spring hydrograph separation by means of a two components mixing model (surface water and karstic groundwater) using specific electrical conductivity, (ii) decomposition of storm-derived water flux and turbidity thanks to the second-derivative method, (iii) comparison of the transfer times (approximate tomodal times) of the elementary turbidity and surface water flux signals, respectively. The mass corresponding to direct transfer, computed after signal decomposition, is then used to re-calculate a particle recovery rate, which passes so from 514 to 373%. Relations between particle flux and hydrodynamics show that resuspension can be either the fact of the dynamics of the introduction system, or that of the chalk karstic aquifer in general (case of resuspension not associated to surface water flux). In this sense, evolution of particle flux (and consequently of turbidity) can be also a marker of the karst structure. (C) 2003 Elsevier Science B.V. All rights reserved

Differences in the C-14 age, delta C-13 and delta O-18 of Holocene tufa and speleothem in the Dinaric Karst, 2003,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Horvatincic N. , Bronic I. K. , Obelic B. ,
We studied Holocene speleothems and tufa samples collected in numerous caves and rivers in the Dinaric Karst of Croatia, Slovenia, Bosnia and Herzegovina, as well as Serbia and Montenegro. Differences in the formation process of tufa and speleothems are discussed in the context of their isotopic composition (C-14, C-13 and O-18), as well as the chemistry of surface water (rivers, lakes) and drip water (in caves). The physical and chemical parameters monitored in the surface water (tufa precipitation) and drip water (speleothem precipitation) show that more stable conditions accompany speleothem rather than tufa formation. This is particularly obvious in the water temperature variations (2-22degreesC in surface water and 7-12degreesC in drip water) and in saturation index variation (3-11 in surface water and 1-6 in drip water). The range of C-14 ages recorded by Holocene speleothems (similar to 12 000 yr) is wider by several thousands years than that of Holocene tufa samples (similar to 6000 yr). delta(13)C values for tufa samples range from -12parts per thousand to -6parts per thousand and for speleothem samples from -12parts per thousand to ?? per thousand reflecting higher soil carbon and/or vegetation impact on the process of tufa than on speleothem formation. The differences in delta(18)O values of tufa and speleothem samples from different areas reflect different temperature conditions and differing isotopic composition in the water. The study shows that speleothems from the Dinaric Karst can be used as global palaeoclimatic records, whereas tufa records changes in the local palaeoenvironment. (C) 2003 Elsevier Science B.V. All rights reserved

Differences in the 14C age, [delta]13C and [delta]18O of Holocene tufa and speleothem in the Dinaric Karst, 2003,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Horvatincic Nada, Krajcar Bronic Ines, Obelic Bogomil,
We studied Holocene speleothems and tufa samples collected in numerous caves and rivers in the Dinaric Karst of Croatia, Slovenia, Bosnia and Herzegovina, as well as Serbia and Montenegro. Differences in the formation process of tufa and speleothems are discussed in the context of their isotopic composition (14C, 13C and 18O), as well as the chemistry of surface water (rivers, lakes) and drip water (in caves). The physical and chemical parameters monitored in the surface water (tufa precipitation) and drip water (speleothem precipitation) show that more stable conditions accompany speleothem rather than tufa formation. This is particularly obvious in the water temperature variations (2-22[deg]C in surface water and 7-12[deg]C in drip water) and in saturation index variation (3-11 in surface water and 1-6 in drip water). The range of 14C ages recorded by Holocene speleothems (~12 000 yr) is wider by several thousands years than that of Holocene tufa samples (~6000 yr). [delta]13C values for tufa samples range from -12[per mille sign] to -6[per mille sign] and for speleothem samples from -12[per mille sign] to [per mille sign] reflecting higher soil carbon and/or vegetation impact on the process of tufa than on speleothem formation. The differences in [delta]18O values of tufa and speleothem samples from different areas reflect different temperature conditions and differing isotopic composition in the water. The study shows that speleothems from the Dinaric Karst can be used as global palaeoclimatic records, whereas tufa records changes in the local palaeoenvironment

Recent results of the dye tracer tests of the Chocholowskie Vaucluse Spring karst system (Western Tatra Mts.), 2004,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Barczyk G,
The region of the Bobrowiec Massif, crucial in underground flows within the Chocholowski Stream catchment area, was not studied in details until the 50ies. The Chocholowskie Vaucluse Spring is recharged mainly by karst systems, including that of the Szczelina Chocholowska - Jaskinia Rybia caves. The remaining 20% of water in the system comes from surface waters of the Chocholowski Stream. First successful dye tests were conducted on this system in 1971/1972. The paper presents data and interpretation of the recent dye-tracer experiments for the Chocholowskie Vaucluse Spring recharge area. The results of these tests prove that the connection between the Szczelina Chocholowska - Rybia caves karst system and the Chocholowskie Vaucluse Spring is of a karst-fissure character. This hydraulic connection is a typical example of a sub-channel circulation, where flow through a karst-fissure system takes place beneath the bottom of an existing river channel. Comparing the time of dye flow through the system with water stages indicates that the system of fissures linking the sinkhole zone with the vaucluse spring is at least three fold. The inverse relation between watermark stands reflecting the degree of watering in the massif and the time, at which dye penetrates the system, is also distinctly visible

Isotopic and geochemical evolution of ground and surface waters in a karst dominated geological setting: A case study from Belize, Central America, 2004,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Marfia A. M. , Krishnamurthy R. V. , Atekwana E. A. , Panton W. F. ,
Analysis of stable isotopes and major ions in groundwater and surface waters in Belize, Central America was carried out to identify processes that may affect drinking water quality. Belize has a subtropical rainforest/savannah climate with a varied landscape composed predominantly of carbonate rocks and clastic sediments. Stable oxygen (delta(18)O) and hydrogen (deltaD) isotope ratios for surface and groundwater have a similar range and show high d-excess (10-40.8parts per thousand). The high d-excess in water samples suggest secondary continental vapor flux mixing with incoming vapor from the Caribbean Sea. Model calculations indicate that moisture derived from continental evaporation contributes 13% to overhead vapor load. In surface and groundwater, concentrations of dissolved inorganic carbon (DIC) ranged from 5.4 to 112.9 mg C/l and delta(13)C(DIC) ranged from -7.4 to -17.4parts per thousand. SO42, Ca2 and Mg2 in the water samples ranged from 2-163, 2-6593 and 2-90 mg/l, respectively. The DIC and delta(13)C(DIC) indicate both open and closed system carbonate evolution. Combined delta(13)C(DIC) and Ca2, Mg2 SO42- suggest additional groundwater evolution by gypsum dissolution and calcite precipitation. The high SO42- content of some water samples indicates regional geologic control on water quality. Similarity in the range of delta(18)O, deltaD and delta(13)C(DIC) for surface waters and groundwater used for drinking water supply is probably due to high hydraulic conductivities of the karstic aquifers. The results of this study indicate rapid recharge of groundwater aquifers, groundwater influence on surface water chemistry and the potential of surface water to impact groundwater quality and vise versa. (C) 2003 Elsevier Ltd. All rights reserved

Conduit properties and karstification in the unconfined Floridan Aquifer, 2004,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Screaton E. , Martin J. B. , Ginn B. , Smith L. ,
Exchange of water between conduits and matrix is an important control on regional chemical compositions, karstification, and quality of ground water resources in karst aquifers. A sinking stream (Santa Fe River Sink) and its resurgence (River Rise) in the unconfined portion of the Floridan Aquifer provide the opportunity to monitor conduit inflow and outflow. The use of temperature as a tracer allows determination of residence times and velocities through the conduit system. Based on temperature records from two high water events, flow is reasonably represented as pipe flow with a cross-sectional area of 380 m(2), although this model may be complicated by losses of water from the conduit system at higher discharge rates. Over the course of the study year, the River Rise discharged a total of 1.9 x 10(7) m(3) more water than entered the River Sink, reflecting net contribution of ground water from the matrix into the conduit system. However, as River Sink discharge rates peaked following three rainfall events during the study period, the conduit system lost water, presumably into the matrix. Surface water in high flow events is typically undersaturated with respect to calcite and thus may lead to dissolution, depending on its residence time in the matrix. A calculation of local denudation is larger than other regional estimates, perhaps reflecting return of water to conduits before calcite equilibrium is reached. The exchange of matrix and conduit water is an important variable in karst hydrology that should be considered in management of these water resources

River backflooding into a karst resurgence (Loiret, France), 2004,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Alberic P,
The group of springs located in the west part of the Val d'Orleans exemplifies a type of karstic emergence which has the particularity to get most of its recharge water from a single surface water source, which in this particular case is the River Loire. Hence the flow of this group of springs is known to fluctuate in a close relationship with the water level of the River Loire. Since the second half of the 1990s, the conduit of the upstream spring of the Loiret river (so-called Le Bouillon) has been periodically seen to be invaded by the turbid waters of a small surface tributary (Le Dhuy) flowing back from the confluence to the spring, which then functioned as a swallow-hole. Plotted in a Dhuy versus River Loire diagram, stages of backflooding days describe a domain limited by a curve of the form HDhuy = c e((aH Loire)). The exponential form of the relation corresponds to the increasing resistance of the emerging flow of the spring to the backflooding of the tributary waters, as the River Loire stages rise. The equation above was used to compute a daily backflow index enabling the effective reconstruction of all occurrences effectively counted during the regular period of observation of the spring. Extended to 1985, one can observe that the early 1990s do not appear as a favorable period to backflow events but some may have occurred during the years 1986 to 1989. The observation of rainfall intensity preceding backflooding shows that in a short time span there is no necessity to evoke intrinsic changes inside the Val d'Orleans basin to explain what might appear as a troublesome new phenomenon. In conclusion backflooding has probably existed for a long time and is simply under the control of local heavy rainfall during low River Loire stages. (C) 2003 Elsevier B.V. All rights reserved

Identification of localised recharge and conduit flow by combined analysis of hydraulic and physico-chemical spring responses (Urenbrunnen, SW-Germany), 2004,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Birk S, Liedl R, Sauter M,
Karst aquifers are highly vulnerable to contamination due to the rapid transport of pollutants in conduit systems. Effective strategies for the management and protection of karst aquifers, therefore, require an adequate hydrogeological characterisation of the conduit systems. In particular, the identification and characterisation of conduits transmitting rapid, localised recharge to springs is of great interest for vulnerability assessments. In this work, it is demonstrated that localised recharge and conduit flow in a karst aquifer (Urenbrunnen catchment, southwest Germany) can be characterised by jointly analysing the hydraulic and physico-chemical responses of a spring to recharge events. Conduit volumes are estimated by evaluating time lags between increases in spring discharge and associated changes in the electrical conductivity and temperature of the discharged water. These estimates are confirmed by the results of a combined tracer and recharge test. Variations in electrical conductivity are also shown to assist in the quantification of the fast recharge component associated with short-term recharge pulses. However, spectral analysis of temperature fluctuations reveals that highly mineralised surface waters locally infiltrate into the aquifer during the winter and spring without causing significant electrical conductivity variations in the spring water. Hence, the most consistent conceptual model is obtained by a combined analysis of both physico-chemical parameters. (C) 2003 Elsevier B.V. All rights reserved

Use of stable isotopes to quantify flows between the Everglades and urban areas in Miami-Dade County Florida, 2004,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Wilcox W. M. , Sologabriele H. M. , Sternberg L. O. R. ,
An isotopic study was performed to assess the movement of groundwater for a site located in Miami-Dade County, Florida. The site encompasses portions of a protected wetland environment (northeast Everglades National Park) and suburban residential Miami, incorporating municipal pumping wells and lakes formed by rock mining. Samples of ground, surface, and rainwater were analyzed for their isotopic composition (oxygen-18 and deuterium). Various analytical and graphical techniques were used to analyze this data and two conceptual box models were developed to quantify flows between different regions within the site. Results from this study indicate that the aquifer underlying the study site (the Biscayne aquifer) is highly transmissive with the exception of two semi-confining layers of reduced hydraulic conductivity. Everglades surface water infiltrates into the aquifer and migrates east toward residential areas. In these urban areas, 'shallow' groundwater (above the deeper semi-confining layer) is substantially affected by urban rainfall while 'deep' groundwater (below the deeper semi-confining layer) maintains a composition similar to that of Everglades water. Rock mining lakes in the area provide 'breaks' in the semi-confining layers that allow for mixing of shallow and deep groundwater. As water travels eastward, municipal well intakes, screened to a depth below the deeper semi-confining layer, draw upon not only shallow urban water (predominantly comprised of urban rainfall) and lake water (having influences from both urban rainfall and Everglades water) but also deep water that originated in the Everglades. Results from one of the box models estimate that over 60% of the water being removed by municipal pumping originated in the Everglades. These conclusions suggest that Everglades water, both directly through deep groundwater flow and indirectly through mixing with rock-mining lakes, is being drawn into the operating municipal wellfield.

Geochemical simulation of the formation of brine and salt minerals based on Pitzer model in Caka Salt Lake, 2004,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Liu X. Q. , Cai K. Q. , Yu S. S. ,
The geochemical simulation of the formation of brine and salt minerals based on Pitzer model was made in Caka Salt Lake. The evolution of the mixed surface-water and the mineral sequences were calculated and compared with the hydrochemical compositions of the brine and the salt minerals of the deposit in Caka Salt Lake. The results show that the formation temperature of the lake is between 0degreesC and 5degreesC, which is well identical with other studies. The mixing of salt-karst water with the surface waters, neglected by the former researchers, is very important to the formation of the lake, indicating that the initial waters resulting in the formation of the lake are multi-source. It is the first time to use Pitzer model in China for making geochemical simulation of the formation and evolution of inland salt lake and satisfactory results have been achieved

Discriminating Sources and Flowpaths of Anthropogenic Nitrogen Discharges to Florida Springs, Streams and Lakes, 2005,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Bacchus St, Barile Pj,
Surface discharges of anthropogenic nutrients historically have been the focus of Florida's water-quality regulations. Groundwater contributions to eutrophication of Florida's surface waters are a more recent focus. Florida's naturally oligotrophic springs, streams, and lakes are experiencing significant anthropogenic nutrient contamination resulting from groundwater discharges with elevated nitrate. Sources of nitrate contamination to these surface-water ecosystems include sewage effluent, industrial animal waste (concentrated animal feedlot operations) and inorganic fertilizers. In this study, stable nitrogen isotope ({delta}15N) analysis of freshwater macrophytes was combined with basic knowledge of watershed and springshed land use and aquifer characteristics to provide evidence of nitrogen contamination sources and groundwater flowpaths. Selected naturally oligotrophic ecosystems included springs and a spring-run stream within the Ocala National Forest (ONF) and springs, a blackwater stream, and a sinkhole lake on or adjacent to state lands. Elevated {delta}15N values ([~] 8 to 12{per thousand}) in ONF macrophytes indicated nitrogen contamination from sewage effluent. Underground injections of effluent and other wastes at ONF's Alexander and Juniper Springs Recreation Areas are the sole source of contaminants flowing through the sandy, surficial aquifer at those study areas. Samples from springs on state lands indicated nitrogen contamination from various sources via regional groundwater flowpaths. At Lake Placid's state lands, a dairy-waste lagoon was the groundwater source of nitrogen contamination via the sandy, surficial aquifer. Bulow Creek {delta}15N macrophyte values ([~] 5 to 8{per thousand}) suggested contamination from both cattle and septic tank leachate. Results indicated that uptake of anthropogenic nitrogen occurred in invasive alien and nuisance native macrophytes in the four freshwater ecosystem types evaluated

The transition of a freshwater karst aquifer to an anoxic marine system, 2005,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Garman Km, Garey Jr,
Jewfish Sink is located in the shallow seagrass flats of the Gulf of Mexico in west central Florida. Jewfish Sink was a submarine spring until the drought of 1961-1962 when it ceased flowing. Today, the sink is an anaerobic marine basin and provides the opportunity to study the implications of saltwater intrusion in coastal karstic areas. The biogeochemistry of Jewfish Sink was studied from summer 2001 through spring 2004. A distinct feature of the sink is the uniform cold temperature (16-17 degrees C) of the deeper anoxic water that does not match groundwater found nearshore or onshore (22-24 degrees C). There are four zones within the sink: oxic zone, transition zone, upper anoxic zone, and anoxic bottom water. The anoxic bottom water does not mix with water from above but may be linked to deep Gulf shelf water through ancient aquifer conduits. The other three zones vary seasonally in oxygen, salinity, and temperature because of limited mixing in the winter due to cooling and sinking of surface water. The walls of the anoxic zones have characteristic microbial mats that are found in other sulfidic karstic features in the area. Bacterial activity appears to be carbon limited in the anoxic zones where sulfate reduction appears to be the major metabolic process. The reduction of sulfate to sulfide appears to be driven by irregular influxes of organic matter including macroalgae, horseshoe crabs, and stingrays that become entrapped within the sink. Bacterial activity in the oxic zones appears to be phosphate limited. Although the system is partially isolated from the overlying marine ecosystem, organic input from above drives the bacterial anaerobic ecosystem, resulting in a sulfide pump. In this model, sulfide percolates up through the karst and removes oxygen from the overlying sediment, which has likely caused changes in the shallow benthic ecosystem. Jewfish Sink appears to be part of an extensive anoxic subterranean estuary that extends under parts of at least three coastal counties in Florida and can serve as a model for the effects of rising sea levels or aquifer mining

Origin and transport of dissolved chemicals in a karst watershed, southwestern Illinois, 2005,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Stueber A. M. , Criss R. E. ,
An extensive base of water quality information emphasizing the effects of land use and hydrology was obtained in the karstified Fountain Creek watershed of southwestern Illinois to help resolve local water quality issues. Agrichemicals dominate the loads of most water quality constituents in the streams and shallow karstic ground water. Only calcium (Ca), magnesium (Mg), Aluminum (AI), and sulfate (SO4) ions are predominantly derived from bedrock or soils, while agrichemicals contribute most of the sodium (Na), potassium (K), chlorine (Cl), nitrate (NO3), fluorine (F), phosphorus (P), and atrazine. Concentrations of individual ions correlate with discharge variations in karst springs and surface streams; highly soluble ions supplied by diffuse ground water are diluted by high flows, while less soluble ions increase with flow as they are mobilized from fields to karst conduits under storm conditions. Treated wastewater containing detergent residues dominates the boron load of streams and provides important subordinate loads of several other constituents, including atrazine derived from the Mississippi River via the public water supply. Average surface water concentrations at the watershed outlet closely approximate a 92:8 mixture of karst ground water and treated wastewater, demonstrating the dominance of ground water contributions to streams. Therefore the karst aquifer and watershed streams form a single water quality system that is also affected by wastewater effluent

Silicification of riphean carbonate sediments (Yurubcha-Tokhomo zone, Siberian Craton), 2005,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Kuznetsov V. G. , Skobeleva N. M. ,
Types and lateral and vertical distribution of silicification in Riphean (largely dolomitic) rocks of the Yurubcha-Tokhomo zone of the Siberian Craton are discussed. It is shown that quartz and pyroclastic material in sediments were subjected to intense dissolution in a highly alkaline Riphean basin with the release of silica. Rapid and abrupt decrease in alkalinity during hiatus and desiccation periods resulted in the precipitation of dissolved silica and silicification of near-surface sediments. Lateral distribution of silicification was controlled by the redistribution of silica during the pre-Vendian hiatus, when surface waters were filtered through a carbonate massif with the simultaneous karst formation and silica dissolution. In the water discharge area, secondary silica was precipitated owing to changes in pH values and other physicochemical conditions

Modeling complex flow in a karst aquifer, 2006,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Quinn John J. , Tomasko David, Kuiper James A. ,
Carbonate aquifers typically have complex groundwater flow patterns that result from depositional heterogeneities and post-lithification fracturing and karstification. Various sources of information may be used to build a conceptual understanding of flow in the system, including drilling data, well tests, geophysical surveys, tracer tests, and spring gaging. These data were assembled to model flow numerically in Germany's Malm Formation, at a site where water disappears from the beds of ephemeral stream valleys, flows through conduit systems, and discharges to springs along surface water features. Modeling was performed by using a finite-difference approach, with drain networks, representing the conduit component of flow, laced throughout the porous medium along paths inferred on the basis of site data. This approach represents an improvement over other karst models that attempt to represent a conduit by a single, specialized model node at the spring location or by assigning a computationally problematic extremely high permeability to a zone. By handling the conduit portion of this mixed-flow system with drains, a realistic, interpretive flow model was created for this intricate aquifer

Results 46 to 60 of 60
You probably didn't submit anything to search for