MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_left.php on line 5
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That stress, geostatic is the total load per unit area of sediments and water above some plane of reference. it is the sum of (1) the effective stress, and (2) the neutral stress [21].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_right.php on line 7
What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for saline (Keyword) returned 98 results for the whole karstbase:
Showing 91 to 98 of 98
Nullarbor Caves, Australia, 2012,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
James Julia M. , Contos Annalisa K. , Barnes Craig M.

In Australia, the karst land referred to as the Nullarbor covers an area in excess of 200,000 km2, although in proportion to its area the karst is poor in known caves. Despite being referred to by their collective name, the Nullarbor Caves, many of the individual caves are world class in their own right. In the world of caves, where in most cases biogenic carbon dioxide and surface waters provide the essential ingredients for the solution of limestone and the precipitation of decorations, the more of both, the bigger and more spectacular the caves. The Nullarbor Caves provide an example of how caves can originate, enlarge, and become decorated with speleothems at times when there is a shortage of both.


NA JAVORCE CAVE A NEW DISCOVERY IN THE BOHEMIAN KARST (CZECH REPUBLIC): UNIQUE EXAMPLE OF RELATIONSHIPS BETWEEN HYDROTHERMAL AND COMMON KARSTIFICATION, 2013,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Dragoun J. Ž, á, K K. Vejlupek J. Filippi M. Novotný, J. Dobeš, P.

 

The Na Javorce Cave is located in the Bohemian Karst, Czech Republic, near the Karlštejn castle, about 25 km SW of Prague. The cave was discovered as a result of extensive exploration including cave digging and widely employed capping of narrow sections. Exploration in the cave has already lasted 20 years. The cave is fitted with several hundred meters of fixed and rope ladders and several small fixed bridges across intra-cave chasms. Access to the remote parts of the cave is difficult because of long narrow crawl passages and deep and narrow vertical sections. The Na Javorce Cave became the deepest cave discovered to date in Bohemia with the discovery of its deepest part containing a lake in 2010. The cave was formed in vertically dipping layers of Lower Devonian limestone; it is 1,723 m long and 129 m deep, of which 9 m is permanently flooded (data as of December 2012). The cave is polygenetic, with several clearly separable evolutionary stages. Cavities discovered to date were mostly formed along the tectonic structures of two main systems. One of these systems is represented by vertical faults of generally N-S strike, which are frequently accompanied by vein hydrothermal calcite with crystal cavities. The second fault system is represented by moderately inclined faults (dip 27 to 45°, dip direction to the W). Smaller tube-like passages of phreatic morphology connect the larger cavities developed along the two above-mentioned systems. The fluid inclusion data obtained for calcite developed along both fault systems in combination with C and O stable isotope studies indicate that the hydrothermal calcite was deposited from moderately saline fluids (0.5 to 8.7 wt. % NaCl equiv.) in the temperature range from 58 to 98 °C. The fluids were NaCl-type basinal fluids, probably derived from the deeper clastic horizons of the Barrandian sedimentary sequence. The age of the hydrothermal processes is unknown; geologically it is delimited by the Permian and Paleogene. The hydrothermal cavities are small compared to cavities formed during the later stages of karstification. The majority of the known cavities were probably formed by corrosion by floodwater derived from an adjacent river. This process was initiated during the Late Oligocene to Early Miocene, as was confirmed by typical assemblage of heavy minerals identical in the surface river sediments and in clastic cave sediments. The morphology of most cavities is phreatic or epiphreatic, with only local development of leveled roof sections (“Laugdecken”). The phreatic evolution of the cave is probably continuing into the present in its deepest permanently flooded part, which exhibits a water level close to that of the adjacent Berounka River. Nevertheless, the chemistry of the cave lake differs from that of the river water. The cave hosts all the usual types of cave decoration (including locally abundant erratics). The most interesting speleothem type is cryogenic cave carbonate, which was formed during freezing of water in relation to the presence of permafrost during the Glacial period. The occurrence of cryogenic cave carbonate here indicates that the permafrost of the Last Glacial period penetrated to a depth of at least 65 m below the surface.


Geochemistry and isotope geochemistry of the Monfalcone thermal waters (northern Italy): inference on the deep geothermal reservoir, 2013,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Petrini R. , Italiano F. , Ponton M. , Slejko F. F. , Aviani U. , Zini L.

Geochemical investigations were carried out to define the origin of the low- to moderate-temperature thermal waters feeding the Monfalcone springs in northern Italy. Chemical data indicate that waters approach the composition of seawater. Mixing processes with cold low-salinity waters are highlighted. The δ18O and δD values are in the range −5.0 to −6.4 ‰, and −33 to −40 ‰, respectively, suggesting the dilution of the saline reservoir by karst-type freshwaters. A surplus of Ca2+ and Sr2+ ions with respect to a conservative mixing is ascribed to diagenetic reactions of the thermal waters with Cretaceous carbonates at depth. The measured Sr isotopic composition (87Sr/86Sr ratio) ranges between 0.70803 and 0.70814; after correction for the surplus Sr, a 87Sr/86Sr ratio indicating Miocene paleo-seawater is obtained. The dissolved gases indicate long-lasting gas–water interactions with a deep-originated gas phase of crustal origin, dominated by CO2 and marked by a water TDIC isotopic composition in the range −5.9 to−8.8 and helium signature with 0.08 < R/Ra < 0.27, which is a typical range for the crust. A possible scenario for the Monfalcone thermal reservoir consists of Miocene marine paleowaters which infiltrated through the karstic voids formed within the prevalently Cretaceous carbonates during the upper Eocene emersion of the platform, and which were entrapped by the progressive burial by terrigenous sediments.


STRONTIUM ISOTOPE RATIOS (87SR/86SR) IN GYPSUM SPELEOTHEMS FROM THE NAICA MINE CAVES (CHIHUAHUA, MEXICO): GENETIC IMPLICATIONS, 2013,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Gzquez Fernando, Calaforra Jos Maria, Garcacasco Antonio, Sanna Laura, Forti Paolo

The 87Sr/86Sr ratio of several gypsum speleothems from the caves of the Naica Mine (Chihuahua, Mexico) has been determined in order to evaluate the origin of the saline solution from which they precipitated. The 87Sr/86Sr ratios of the huge selenite crystals from the Cristales Cave (-290 m Level) and of the gypsum core of the “espadas” speleothems from the Espadas Cave (-120 m Level) are 0.707337 and 0.708343, respectively. These values are slightly higher than that of the carbonate host rock (0.7072) as well as that of the Tertiary felsic dikes emplaced in the carbonate sequence (0.7080). They are also lower than those expected for crystallization from seepage water solutions (>0.7090). Therefore, the 87Sr/86Sr values determined for the speleothems at Naica suggest that gypsum in these caves precipitated from a mixture of infiltration water and thermal water. The 87Sr/86Sr ratio of gypsum speleothems is regarded as a useful indicator to infer the rela- tive contribution of meteoric deep thermal water solutions during the genesis of the Naica’s gypsum speleothems.


Environmental controls on organic matter production and transport across surface-subsurface and geochemical boundaries in the Edwards aquifer, Texas, USA, 2013,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Hutchins Benjamin T. , Schwartz Benjamin F. , Engel Annette S.

Karst aquifer phreatic zones are energy limited habitats supported by organic matter (OM) flow across physical and geochemical boundaries. Photosynthetic OM enters the Edwards Aquifer of Central Texas via streams sinking along its northeastern border. The southeastern boundary is marked by a rapid transition between oxygenated freshwaters and anoxic saline waters where OM is likely produced by chemolithoautotrophic microbes. Spatial and temporal heterogeneity in OM composition at these boundaries was investigated using isotopic and geochemical analyses. δ13C values for stream fine particulate OM (FPOM) (−33.34‰ to −11.47‰) decreased during regional drought between fall 2010 and spring 2012 (p<0.001), and were positively related to FPOM C:N ratios (r2 =0.47, p<0.001), possibly due to an increasing contribution of periphyton. Along the freshwater-saline water interface (FwSwI), δ 13CFPOM values (−7.23‰ to −58.18‰) correlated to δ13C values for dissolved inorganic carbon (δ13C DIC) (−0.55‰ to −7.91‰) (r2 =0.33, p=0.005) and were depleted relative to δ13C DIC values by 28.44‰, similar to fractionation values attributed to chemolithoautotrophic carbon fixation pathways using DIC as the substrate. δ13CFPOM values also became enriched through time (p<0.001), and δ13C DIC values (r2 =0.43, p<0.001) and δ13CFPOM values (r2 =0.35, p=0.004) at FwSwI sites increased with distance along the southwest-northeast flowpath of the aquifer. Spatial variability in FwSwI δ13C DIC values is likely due to variable sources of acidity driving carbonate dissolution, and the temporal relationship is explained by changes to recharge and aquifer level that affected transport of chemolithoautotrophic OM across the FwSwI.


Integration of Seismic-Reflection and Well Data to Assess the Potential Impact of Stratigraphic and Structural Features on Sustainable Water Supply from the Floridan Aquifer System, Broward County, Florida, 2014,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Cunningham, K. J.

The U.S. Geological Survey and Broward County water managers commenced a 3.5-year cooperative study in July 2012 to refine the geologic and hydrogeologic framework of the Floridan aquifer system (FAS) in Broward County. A lack of advanced stratigraphic knowledge of the physical system and structural geologic anomalies (faults and fractures originating from tectonics and karst-collapse structures) within the FAS pose a risk to the sustainable management of the resource.

The principal objective of the study is to better define the regional stratigraphic and structural setting of the FAS in Broward County. The objective will be achieved through the acquisition, processing, and interpretation of new seismic-reflection data along several canals in Broward County. The interpretation includes integration of the new seismic-reflection data with existing seismic-reflection profiles along Hillsboro Canal in Broward County and within northeast Miami-Dade County, as well as with data from nearby FAS wellbores. The scope of the study includes mapping the geologic, hydrogeologic, and seismic-reflection framework of the FAS, and identifying stratigraphic and structural characteristics that could either facilitate or preclude the sustainable use of the FAS as an alternate water supply or a treated effluent repository. In addition, the investigation offers an opportunity to: (1) improve existing groundwater flow models, (2) enhance the understanding of the sensitivity of the groundwater system to well-field development and upconing of saline fluids, and (3) support site selection for future FAS projects, such as Class I wells that would inject treated effluent into the deep Boulder Zone.


Vadose CO2 gas drives dissolution at water tables in eogenetic karst aquifers more than mixing dissolution, 2014,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Gulley J. , Martin J. , Moore P.

Most models of cave formation in limestone that remains near its depositional environment and has not been deeply buried (i.e. eogenetic limestone) invoke dissolution from mixing of waters that have different ionic strengths or have equilibrated with calcite at different pCO2 values. In eogenetic karst aquifers lacking saline water, mixing of vadose and phreatic waters is thought to form caves. We show here calcite dissolution in a cave in eogenetic limestone occurred due to increases in vadose CO2 gas concentrations and subsequent dissolution of CO2 into groundwater, not by mixing dissolution. We collected high-resolution time series measurements (1 year) of specific conductivity (SpC), temperature, meteorological data, and synoptic water chemical composition from a water table cave in central Florida (Briar Cave).We found SpC, pCO2 and calcite undersaturation increased through late summer, when Briar Cave experienced little ventilation by outside air, and decreased through winter, when increased ventilation lowered cave CO2(g) concentrations.We hypothesize dissolution occurred when water flowed from aquifer regions with low pCO2 into the cave, which had elevated pCO2. Elevated pCO2 would be promoted by fractures connecting the soil to the water table. Simple geochemical models demonstrate that changes in pCO2 of less than 1% along flow paths are an order of magnitude more efficient at dissolving limestone thanmixing of vadose and phreatic water.We conclude that spatially or temporally variable vadose CO2(g) concentrations are responsible for cave formation becausemixing is too slow to generate observed cave sizes in the time available for formation. While this study emphasized dissolution, gas exchange between the atmosphere and karst aquifer vadose zones that is facilitated by conduits likely exerts important controls on other geochemical processes in limestone critical zones by transporting oxygen deep into vadose zones, creating redox boundaries that would not exist in the absence of caves.


Karstification of Dolomitic Hills at south of Coimbra (western-central Portugal) - Depositional facies and stratigraphic controls of the (palaeo)karst affecting the Coimbra Group (Lower Jurassic), 2014,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Dimuccio, Luca Antonio

An evolutionary model is proposed to explain the spatio-temporal distribution of karstification affecting the Lower Jurassic shallow-marine carbonate succession (Coimbra Group) of the Lusitanian Basin, cropping out in the Coimbra-Penela region (western-central Portugal), in a specific morphostructural setting (Dolomitic Hills). Indeed, in the Coimbra Group, despite the local lateral and vertical distributions of dolomitic character and the presence of few thick sandy-argillaceous/shale and marly interbeds, some (meso)karstification was identified, including several microkarstification features. All types of karst forms are commonly filled by autochthonous and/or allochthonous post-Jurassic siliciclastics, implying a palaeokarstic nature.

The main aim of this work is to infer the interplay between depositional facies, diagenesis, syn- and postdepositional discontinuities and the spatio-temporal distribution of palaeokarst. Here, the palaeokarst concept is not limited to the definition of a landform and/or possibly to an associated deposit (both resulting from one or more processes/mechanisms), but is considered as part of the local and regional geological record.

Detailed field information from 21 stratigraphic sections (among several dozens of other observations) and from structural-geology and geomorphological surveys, was mapped and recorded on graphic logs showing the lithological succession, including sedimentological, palaeontological and structural data. Facies determination was based on field observations of textures and sedimentary structures and laboratory petrographic analysis of thin-sections. The karst and palaeokarst forms (both superficial and underground) were classified and judged on the basis of present-day geographic location, morphology, associated discontinuities, stratigraphic position and degree of burial by post-Jurassic siliciclastics that allowed to distinguish a exposed karst (denuded or completely exhumed) than a palaeokarst (covered or partially buried).

A formal lithostratigrafic framework was proposed for the local ca. 110-m-thick combined successions of Coimbra Group, ranging in age from the early Sinemurian to the early Pliensbachian and recorded in two distinct subunits: the Coimbra formation, essentially dolomitic; and the overlying S. Miguel formation, essentially dolomitic-limestone and marly-limestone.

The 15 identified facies were subsequently grouped into 4 genetically related facies associations indicative of sedimentation within supra/intertidal, shallow partially restricted subtidal-lagoonal, shoal and more open-marine (sub)environments - in the context of depositional systems of a tidal flat and a very shallow, inner part of a low-gradient, carbonate ramp. In some cases, thick bedded breccia bodies (tempestites/sismites) are associated to synsedimentary deformation structures (slumps, sliding to the W to NW), showing the important activity of N–S and NNE–SSW faults, during the Sinemurian. All these deposits are arranged into metre-scale, mostly shallowing-upward cycles, in some cases truncated by subaerial exposure events. However, no evidence of mature pedogenetic alteration, or the development of distinct soil horizons, was observed. These facts reflect very short-term subaerial exposure intervals (intermittent/ephemeral), in a semiarid palaeoclimatic setting but with an increase in the humidity conditions during the eogenetic stage of the Coimbra Group, which may have promoted the development of micropalaeokarstic dissolution (eogenetic karst).

Two types of dolomitization are recognized: one (a) syndepositional (or early diagenetic), massive-stratiform, of “penesaline type”, possibly resulting from refluxing brines (shallow-subtidal), with a primary dolomite related to the evaporation of seawater, under semiarid conditions (supra/intertidal) and the concurrent action of microbial activity; another (b) later, localized, common during diagenesis (sometimes with dedolomitization), particularly where fluids followed discontinuities such as joints, faults, bedding planes and, in some cases, pre-existing palaeokarstic features.

The very specific stratigraphic position of the (palaeo)karst features is understood as a consequence of high facies/microfacies heterogeneities and contrasts in porosity (both depositional and its early diagenetic modifications), providing efficient hydraulic circulation through the development of meso- and macropermeability contributed by syn- and postdepositional discontinuities such as bedding planes, joints and faults. These hydraulic connections significantly influenced and controlled the earliest karst-forming processes (inception), as well as the degree of subsequent karstification during the mesogenetic/telogenetic stages of the Coimbra Group. Multiple and complex karstification (polyphase and polygenic) were recognized, including 8 main phases, to local scale, integrated in 4 periods, to regional scale: Jurassic, Lower Cretaceous, pre-Pliocene and Pliocene-Quaternary. Each phase of karstification comprise a specific type of (palaeo)karst (eogenetic, subjacent, denuded, mantled-buried and exhumed).

Finally, geological, geomorphological and hydrogeological characteristics allowed to describe the local aquifer. The elaborated map of intrinsic vulnerability shows a karst/fissured and partially buried aquifer (palaeokarst) with high to very high susceptibility to the contamination.


Results 91 to 98 of 98
You probably didn't submit anything to search for