Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That antecedent-soil moisture is the degree of water saturation in the soil prior to a precipitation event [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for sulfide (Keyword) returned 118 results for the whole karstbase:
Showing 106 to 118 of 118
EVAPORITE KARST AND HYDROGEOLOGY OF THE CASTILE FORMATION: CULBERSON COUNTY, TEXAS AND EDDY COUNTY, NEW MEXICO, 2013, Stafford, K. W.

Karst development in Permian Castile evaporites has resulted in complex speleogenetic evolution with multiple phases of diagenetic overprinting. More than 10,000 surficial features, primarily sinkholes, occur throughout Culberson County, Texas, and Eddy County, New Mexico, based on GIS-analyses where laminated Castile sulfates crop out. Cave development is largely the result of hypogene processes, where ascending fluids from the underlying Bell Canyon Formation migrate near vertically through the Castile Formation, creating caves up to 100 meters deep and over 500 meters long, which have been breached through a combination of collapse and surface denudation. Numerous small and laterally limited epigene features occur throughout the region, as well as the anomalously large Parks Ranch Cave System with more than 6.5 kilometers of cave development and multiple large, incised, sinkhole entrances. Hypogene caves exhibit varying degrees of epigenic overprinting as a result of surficial breaching.

Water resources in the Castile Formation are directly related to karst development with extremely heterogeneous flow networks. Most springs in the region discharge sulfate-rich waters, contain high levels of hydrogen sulfide, and support sulfate-reducing bacterial colonies. Isolated stream passages in northern Culberson County provide locally significant water resources that do not exhibit elevated hydrogen sulfide concentrations. Local water tables vary greatly over the region and few caves access base-level conditions. Upward migration of hydrocarbons complicates regional hydrology and diagenesis, resulting in extensive evaporite calcitization, which greatly modifies both fluid / rock interaction and permeability structures.


DEEP TIME ORIGINS OF SINKHOLE COLLAPSE FAILURES IN SEWAGE LAGOONS IN SOUTHEAST MINNESOTA, 2013, Alexander Jr. E. C. , Runkel A. C. , Tipping R. G.

Three of the approximately twenty-three municipal wastewater treatment lagoons constructed in the 1970s and 1980s in southeastern Minnesota’s karst region have failed through sinkhole collapse. Those collapses occurred between 1974 and 1992. All three failures occurred at almost exactly the same stratigraphic position. That stratigraphic interval, just above the unconformable contact between the Shakopee and Oneota Formations of the Ordovician Prairie du Chien Group is now recognized as one of the most ubiquitous, regional-scale, karst hydraulic high-transmissivity zones in the Paleozoic hydrostratigraphy of southeastern Minnesota. These karst aquifers have been developing multi-porosity conduit flow systems since the initial deposition of the carbonates about 480 million years ago. The existence of syndepositional interstratal karst unconformities between the Oneota and Shakopee Formations and between the Shakopee and St. Peter Formations, were recognized in the 1800s. About 270 million years ago galena, sphalerite and iron sulfides were deposited in pre-existing solution enlarged joints, bedding planes and caves. The region has been above sea level since the Cretaceous and huge volumes of fresh water have flowed through these rocks. The regional flow systems have changed from east-to-west in the Cenozoic, to north-to-south in or before the Pleistocene. The incision of the Mississippi River and its tributaries has and is profoundly rearranging the ground water flow systems as it varies the regional base levels during glacial cycles. The Pleistocene glacial cycles have removed many of the surficial karst features and buried even more of them under glacial sediments. High erosion rates from row crop agriculture between the us1850s and 1930s filled many of the conduit systems with soil. Over eighty years of soil conservation efforts have significantly reduced the flux of mobilized soil into the conduits. Those conduits are currently flushing much of those stored soils out of their spring outlets. Finally, the increased frequency and intensity of major storm events is reactivating conduit segments that have been clogged and inactive for millions of years.The karst solution voids into which the lagoons collapsed have formed over 480 million years. The recognition and mapping of this major karst zone will allow much more accurate karst hazard maps to be constructed and used in sustainable resource management decisions.


Do carbonate karst terrains affect the global carbon cycle?, 2013, Martin Jonathan B. , Brown Amy, Ezell John

Carbonate minerals comprise the largest reservoir of carbon in the earth’s lithosphere, but they are generally assumed to have no net impact on the global carbon cycle if rapid dissolution and precipitation reactions represent equal sources and sinks of atmospheric carbon. Observations of both terrestrial and marine carbonate systems indicate that carbonate minerals may simultaneously dissolve and precipitate within different portions of individual hydrologic systems. In all cases reported here, the dissolution and precipitation reactions are related to primary production, which fixes atmospheric CO2 as organic carbon, and the subsequent remineralization in watersheds of the organic carbon to dissolved CO2. Deposition of carbonate minerals in the ocean represents a flux of CO2 to the atmosphere. The dissolution of oceanic carbonate minerals can act either as a sink for atmospheric CO2 if dissolved by carbonic acid, or as a source of CO2 if dissolved through sulfide oxidation at the freshwater-saltwater boundary. Since dissolution and precipitation of carbonate minerals depend on ecological processes, changes in these processes due to shifts in rainfall patterns, earth surface temperatures, and sea level should also alter the potential magnitudes of sources and sinks for atmospheric CO2 from carbonate terrains, providing feedbacks to the global carbon cycle that differ from modern feedbacks.


Biological Control on Acid Generation at the Conduit-Bedrock Boundary in Submerged Caves: Quantification through Geochemical Modeling, 2013, Herman Janet S. , Hounshell Alexandria G. , Franklin Rima B, Mills Aaron L.

No-mount Cave, located in wekiwa Springs State Park in central Florida, USA, is an aphotic, submerged, freshwater cave in which large colonies of sulfur-oxidizing bacteria live in filamentous microbial mats. Upwardly discharging groundwater enters the cave from the Upper Floridan aquifer, specifically the Eocene-aged Ocala Limestone. we undertook a combined field, laboratory, and modeling study in which we sought to determine the amount of calcite dissolution attributable to the generation of protons by microbially mediated sulfide oxidation. The chemical compositions of groundwater within the limestone formation collected through a newly designed sampling device and of water in the cave conduit were used in geochemical modeling. we used the reaction-path model PHREEqCI to quantify the amount of calcite dissolution expected under various plausible scenarios for mixing of formation water with conduit water and extent of bacterial sulfide oxidation. Laboratory experiments were conducted using flow-through columns packed with crushed limestone from the study site. Replicate columns were eluted with artificial groundwater containing dissolved HS- in the absence of microbial growth. without biologically mediated sulfide oxidation, no measurable calcite dissolution occurred in laboratory experiments and no additional amount of speleogenesis is expected as formation water mixes with conduit water in the field. In contrast, significant calcite dissolution is driven by the protons released in the biological transformation of the aqueous sulfur species. Although a range of results were calculated, a plausible amount of 158 mg Ca2+ released to conduit water per liter of groundwater crossing the formation-conduit boundary and mixing with an equal volume of conduit water was predicted. Our modeling results indicate that significant cave development can be driven by microbially mediated sulfide oxidation under these hydrogeochemical conditions


An approach for collection of nearfield groundwater samples in submerged limestone caverns, 2013, Mills Aaron L. , Tysall Terrence N. , Herman Janet S.

Walls of submerged caves feeding Florida springs are often lined with a heavy mat of filamentous bacteria, many of which are able to oxidize reduced sulfur in groundwater migrating from the porous bedrock into the cave conduit. To determine changes in water chemistry as water passes through the microbial mat, a simple device made from standard well screen and sealed with a rubber stopper and controllable vents was installed in a hole drilled in the wall of the cave passage. The sampler was sealed in place with marine epoxy. we measured anions in water from the sampler and from the water-filled conduit taken just outside the sampler. Most anions measured viz., Cl, NO3, and PO43−, increased slightly between the matrix and conduit waters. However, traces of sulfide were measured in the water from the rock matrix, but not in the conduit. SO4 2−concentrations in the conduit were about twice that measured in the water from the sampler, about 22 and 11 mg SO42− L−1, respectively, providing further evidence that sulfur oxidation is an important process in the bacterial mats attached to the limestone surfaces in these caves. An additional use of the sampling device is to measure discharge from the local bedrock into the cave conduit.


BAHAMIAN CAVES AND BLUE HOLES: EXQUISITELY PRESERVED FOSSIL ASSEMBLAGES AND TAPHONOMIC INFLUENCES, 2014, Albury N. A. , Mylroie J. E.

In The Bahamas, caves and blue holes provide clues to the geologic and climatic history of archipelago but are now emerging as windows into the ecological and cultural past of islands. Cave environments in The Bahamas alternate cyclically between vadose and phreatic conditions with sea-level change, thereby providing unique but ephemeral fossil capture and preservation conditions.

A diverse assemblage of fossil plants and animals from Sawmill Sink, an inland blue hole on Abaco Island in the northern Bahamas, has revealed a prehistoric terrestrial ecosystem with exquisitely preserved fossil assemblages that result from an unusual depositional setting. The entrance is situated in the pine forest and opens into a flooded collapse chamber that intersects horizontal conduits at depths to 54 meters. The deepest passages are filled with sea water up to an anoxic mixing zone at depths of 14 to 9 meters and into the upper surface fresh-water layer. The collapse chamber is partially filled with a large talus pile that coincides with an anoxic halocline and direct sunlight for much of the day.

During glacioeustatic sea-level lowstands in the late Pleistocene, Sawmill Sink was a dry cave, providing roosting sites for bats and owls. Accumulations of bones deposited in depths of 25 to 30 meters were subsequently preserved by sea-level rise in the Holocene. The owl roost deposits are dominated by birds but also include numerous small vertebrate species that were actively transported by owls to the roost sites.

As sea levels rose in the Holocene, Sawmill Sink became a traditional passive pitfall trap. Significant quantities of surface derived organic material collected on the upper regions of the talus at the halocline where decaying plant material produced a dense layer of peat within an anoxic mixing zone enriched with hydrogen sulfide. Vertebrate species that drowned were entombed in the peat, where conditions inhibited large scavengers, microbial decomposition, and mechanical disarticulation, contributing to the superb preserva­tion of the fossil assemblage in the upper regions of the talus.


A REVIEW ON HYPOGENE CAVES IN ITALY, 2014, De Waele J. , Galdenzi S. , Madonia G. , Menichetti M. , Parise M. , Leonardo Piccini , Sanna L. , Sauro F. , Tognini P. , Vattano M. Vigna B.

Although hypogene cave systems have been described since the beginning of the 20th century, the importance in speleogenesis of ascending fluids that acquired their aggressiveness from in-depth sources has been fully realized only in the last decades. Aggressiveness of waters can be related to carbonic and sulfuric acids and the related corrosion-dissolu­tion processes give rise to different types of caves and under­ground morphologies.

The abundance of hydrothermal springs and associated traver­tine deposits, and the widespread interaction between volcanic or sub-volcanic phenomena and karst in many sectors of the Ital­ian peninsula are a strong evidence of hypogene speleogenesis. Furthermore, researches on secondary minerals have allowed to discover hypogene caves formed by highly acidic vapors in sub­aerial environments, also showing that most of these caves have extremely rich mineral associations.

Despite this, until the late 1980s the only known important cave systems of clear hypogene origin in Italy were considered to be the ones hosted in the Frasassi Canyon and Monte Cucco, in which important gypsum deposits undoubtedly showed that sulfuric acid played an important role in the creation of voids (Galdenzi, 1990, 2001; Galdenzi & Maruoka, 2003; Menichetti et al., 2007). Afterwards many other caves were categorized as formed by the sulfuric acid speleogenesis throughout the entire Apennines. Following the broad definition of hypogene caves by Palmer in 1991, and the even more general one of Klimchouk in the last decade (Klimchouk, 2007, 2009), the number of caves considered of hypogene origin in Italy has grown rapidly. Figure 1 shows the hypogene karst systems of Italy, including, besides the well-known and published ones, also the known and less studied, and presumed hypogene cave systems (see also Table 1).

More recently, in some of these caves detailed studies have been carried out including geomorphology, mineralogy, and geochem­istry. Sulfuric acid caves are known from many regions along the Apennine chain (Tuscany, Umbria, Marche, Latium, Campa­nia, Calabria) (Forti, 1985; Forti et al., 1989; Galdenzi and Me­nichetti, 1989, 1995; Galdenzi, 1997, 2001, 2009; Galdenzi et al., 2010; Piccini, 2000; Menichetti, 2009, 2011; Mecchia, 2012; De Waele et al., 2013b), but also from Piedmont, Apulia, Sicily (Vattano et al., 2013) and Sardinia (De Waele et al., 2013a). In this last region ascending fluids have also formed a hypogene cave in quartzite rock. Oxidation of sulfides can locally create hypogene cave morphologies in dominantly epigenic caves, such as in the Venetian forealps (this cave is not shown in Figure 1, being largely epigenic in origin) (Tisato et al., 2012). Ascend­ing fluids have also created large solution voids in Messinian gypsum beds in Piedmont, and these can be defined hypogene caves according to the definition by Klimchouk (Vigna et al., 2010). Some examples of hypogene cave systems due to the rise of CO2-rich fluids are also known in Liguria and Tuscany (Pic­cini, 2000). In the Alps and Prealps (Lombardy), some ancient high mountain karst areas exhibit evidences of an early hypo­gene origin, deeply modified and re-modeled by later epigenic processes. Hypogene morphologies are thus preserved as inac­tive features, and it is often difficult to distinguish them from epigenic ones.

At almost twenty years distance from the first review paper on hypogene cave systems in Central Italy by S. Galdenzi and M. Menichetti (1995), we give a review of the state-of-the-art knowledge on hypogene caves actually known from the whole of Italy


HYPOGENE LIMESTONE CAVES IN GERMANY: GEOCHEMICAL BACKGROUND AND REGIONALITY, 2014, Kempe, S.

Germany exhibits a very diverse geological history. Thus, a large number of stratigraphically, petrographically and tectonically different carbonate and sulfate rocks exist that have been subject to karstification. Here, I discuss first the possible “agents” (sensu Klimchouk) of hypogene karstification. Three principally different processes are identified: water rising because of buoyancy (either thermally or concentration induced), in-situ oxidation of siderite, or rising gases (CO2, CH4 or H2S). Next, a rough overview of German caves and karst is presented. If applying the most pertinent epigene versus hypogene morphological characteristics, it becomes evident that hypogene caves occur in many different areas, often side-by-side with clearly epigene caves. For many areas, the agents of hypogene speleogenesis must remain unclear. This applies for most caves in the Paleozoic limestones of the Rhenish Schist Massif. Only the Iberg/Harz caves seem to be a clear case, with the world-wide highest concentrations of siderite weathering-induced caves occur. The large cavities discovered recently in the Blauhöhlen System and some of the deep pit caves in the Swabian Alb may have their explanation in volcanic CO2, having emanated from some of the 355 pipes of the Swabian volcanic field. Most striking is the high concentration of hypogene caves in the Franconian Alb. Many of them occur in a small area while other areas are devoid of larger caves. Here the tectonic situation suggests that fractures could have taped reservoirs of either sulfide or methane from below. The finding of goethitic crusts in the Bismarckgrotte may indicate that rising anaerobic gases could have been involved


HYPOGENE SPELEOGENESIS AND CO2: SUGGESTIONS FROM KARST OF ITALY, 2014, Menichetti, M.

The carbon dioxide produced in the soil and dissolved in the percolation water is considered as the main agent for karstification in the carbonate rocks. Superficial morphologies and underground caves are product of the corrosion of the limestone, while carbonate speleothems is the other end member of the process.
Hypogene speleogenesis driven by deep seated fluids is the cave formation processes for the main karst systems in the Apennines of Italy. Hydrogen sulfide and endogenic carbon dioxide are the main agents for underground karst corrosion and the soil carbon dioxide plays a secondary rule. The limestone corrosion driven by hydrogen sulfide produces gypsum deposits in caves that could be assumed as the indicator of the hypogene speleogenesis. The action of endogenic carbon dioxide in the cave formation, especially if it operates at lower temperature, is not easy to detect and the resulting cave morphology is not helpful to recognize the cave formation process.
The main sources of carbon dioxide in the underground karst system in the Apennines of Italy can be related to different processes driven by the endogenic fluids emissions. The crustal regional degassing seems to be the prevalent source for carbon dioxide in the karst massifs with the main release in the groundwater. Hydrogen sulfide and methane oxidation, possibly mediated by bacteria activity, are other sources in the buried Cenozoic sediments. Releasing of carbon dioxide along the faults and in the fractures occurring in the carbonate rocks is an important source, especially in the seismically active area. Finally, thermogenic reactions with carbonate rocks are well known as one of the main production mechanism of carbon dioxide released in the atmosphere.
Data from carbon dioxide monitoring in several caves show a relevant contribution of the endogenic carbon dioxide (about 75 %) in the karst system which drives the speleogenesis reactions and shapes the underground morphologies.


SPELEOGENESIS BY THE SULFIDIC SPRINGS AT NORTHERN SIERRA DE CHIAPAS, MEXICO, BASED ON THEIR WATER CHEMISTRY, 2014, Rosaleslagarde L. , Boston P. J.

Conspicuous brackish sulfidic springs have been described at the northern Sierra the Chiapas, Mexico. These springs are produced by a mixture between regional and local groundwater flow paths. The regional groundwater has an average Total Dissolved Ions of 3081 mg/L so it has a brackish composition. This brackish water is saturated with respect to calcite and dolomite but undersaturated with respect to gypsum, anhydrite and halite. The mass balance and the discharge rate are used to quantify the mass and volume of minerals that are dissolved by the brackish spring water following Appelo and Postma (1993). This quantification will allow comparing the various speleogenetic mechanisms in the area. This is considering the composition of the spring water is relatively constant over time, as it is suggested by periodic measurements at the Cueva de Villa Luz springs during the last 10 years.
Sulfur isotopes in the water are consistent with anhydrite dissolution as the main source of the sulfate to the brackish spring water. Thus, the average 6 mol/L of sulfate in the brackish springs are produced by dissolution of 6 mol of anhydrite after subtracting the sulfate that could result from evapotranspiration of rainwater. Each liter of brackish water dissolved an average of 882 mg of anhydrite, which are equivalent to dissolving 0.36 cm3 of this mineral considering a density of 2.981 g/cm3. Additionally, using the average brackish water discharge rate of 144 L/s, an average of 57 g of anhydrite are being dissolved each second per every liter of brackish water. This is a minimal value because some of the sulfate in the water is used by sulfate-reducing bacteria in the subsurface to produce the hydrogen sulfide in the spring water. The anhydrite subject to dissolution is found interbedded in the Cretaceous carbonates, either from the subsurface at 4,000 m below sea level to the carbonate outcrops.
Similarly, we can calculate the volume of halite that is being dissolved by the brackish springs, considering chloride is a conservative element and subtracting the chloride concentration from the rainwater from that of the spring water following Appelo & Postma (1993). The 22 mol/L of chloride in the brackish water can result from dissolution in the subsurface of 22 moles or 1.3 g of halite per liter of brackish water. This mass of halite dissolved is equal to 0.59 cm3 considering a density of 2.168 g/cm3. Alternatively, 118 g of halite are dissolved per second per each liter of brackish water if we use the average discharge rate of 144 L/s.
Even when the brackish springs are oversaturated with respect to calcite and dolomite, their dissolution is still possible due to the common ion-effect of calcium after anhydrite dissolution and by mixing of waters with different compositions. A range of 10 to 80 % of brackish water from the regional aquifers mixes with fresh water from the local aquifer based on their water chemistry. Additionally, sulfuric acid speleogenesis occurs due to the oxidation of hydrogen sulfide to sulfuric acid.
Finally, the increase in the chloride concentration of the fresh water springs with respect to the concentration in rainwater was used to estimate that from the 4000 mm/y of annual precipitation, only 4%, 158 to 182 mm/y, recharge the aquifers. This low percentage is slightly higher than the 3.3% recharge in marls, marly limestone, silts and clays (Sanz et al., 2011), probably because of the relatively small area of carbonate outcrops over the entire region and the lack of recharge in altitudes higher than 1500 m above sea level.
Sulfuric acid is the most obvious speleogenetic mechanism occurring in the caves of the northern Sierra de Chiapas, Mexico due to the high hydrogen sulfide concentration in the spring water. In addition, the location of the springs at a zone of regional and local discharge where waters from different composition converge and mix, and the amount of mixing calculated suggests mixing is also an important speleogenetic mechanism. However, the depth and the time constrains at which these two hypogenic mechanisms occur is still unknown. The relatively low rainwater recharge rate suggests epigenesis is limited. Most likely, the porosity created by dissolution of anhydrite and halite in the subsurface is occluded by the precipitation of calcite. Chemical modeling and petrography will help to elucidate the order of the reactions occurring in the subsurface.


Hydrogeology of northern Sierra de Chiapas, Mexico: A conceptual model based on a geochemical characterization of sulfide-rich karst brackish springs, 2014,

Conspicuous sulfide-rich karst springs flow from Cretaceous carbonates in northern Sierra de Chiapas, Mexico. This is a geologically complex, tropical karst area. The physical, geologic, hydrologic and chemical attributes of these springs were determined and integrated into a conceptual hydrogeologic model. A meteoric source and a recharge elevation below 1500 m are estimated from the spring water isotopic signature regardless of their chemical composition. Brackish spring water flows at a maximum depth of 2000 m, as inferred from similar chemical attributes to the produced water from a nearby oil well. Oil reservoirs may be found at depths below 2000 m. Three subsurface environments or aquifers are identified based on the B, Li+, K+ and SiO2 concentrations, spring water temperatures, and CO2 pressures. There is mixing between these aquifers. The aquifer designated Local is shallow and contains potable water vulnerable to pollution. The aquifer named Northern receives some brackish produced water. The composition of the Southern aquifer is influenced by halite dissolution enhanced at fault detachment surfaces. Epigenic speleogenesis is associated with the Local springs. In contrast, hypogenic speleogenesis is associated with the brackish sulfidic springs from the Northern and the Southern environments.


Hypogene Sulfuric Acid Speleogenesis and rare sulfate minerals in Baume Galini`ere Cave (Alpes-de-Haute-Provence, France). Record of uplift, correlative cover retreat and valley dissection, 2015, Audra Philippe, Gґazquez Fernando, Rull Fernando, Bigot Jeanyves, Camus Hubert

The oxidation of hydrocarbons and sulfide sources (H2S, pyrite) produces sulfuric acid that strongly reacts with bedrock, causing limestone dissolution and complex interactions with other minerals from the bedrock or from cave fillings, mainly clays. This type of cave development, known as Sulfuric Acid Speleogenesis (SAS), is a subcategory of hypogene speleogenesis, where aggressive water rises from depth. It also produces uncommon minerals, mainly sulfates, the typical byproducts of SAS. Baume Galinière is located in Southern France, in the Vaucluse spring watershed. This small maze cave displays characteristic SAS features such as corrosion notches, calcite geodes, iron crusts, and various sulfate minerals. Sulfur isotopes of SAS byproducts (jarosite and gypsum) clearly show they derive from pyrite oxidation. Using XRD and micro-Raman spectroscopy, thirteen minerals were identified, including elemental sulfur, calcite, quartz, pyrite, goethite, gypsum, fibroferrite, plus all of the six members of the jarosite subgroup (jarosite, argentojarosite, ammoniojarosite, hydroniumjarosite, natrojarosite, plumbojarosite). The Baume Galinière deposits are the first documented cave occurrence of argentojarosite and the second known occurrence of plumbojarosite, hydronium jarosite, ammoniojarosite, and fibroferrite. In the Vaucluse watershed, there were numerous upwellings of deep water along major faults, located at the contact of the karstic aquifer and the overlying impervious covers. The mixing of deep and meteoric waters at shallow depths caused pyrite depositions in numerous caves, including Baume Galinière. Sulfuric acid speleogenesis occurred later after base-level drop, when the cave was under shallow phreatic conditions then in the vadose zone, with oxidation of pyrites generating sulfuric acid. Attenuated oxidation is still occurring through condensation of moisture from incoming air. Baume Galinière Cave records the position of the semi-impervious paleo-cover and documents its retreat in relationship to valley incision caused by uplift and tilting of the Vaucluse block during the Neogene.


Hypogene Sulfuric Acid Speleogenesis and rare sulfate minerals in Baume Galinière Cave (Alpes-de-Haute-Provence, France). Record .., 2015, Audra P. , Gázquez F. , Rull F. , Bigot J. Y. , Camus H.

The oxidation of hydrocarbons and sulfide sources (H2S, pyrite) produces sulfuric acid that strongly reacts with bedrock, causing limestone dissolution and complex interactions with other minerals from the bedrock or from cave fillings, mainly clays. This type of cave development, known as Sulfuric Acid Speleogenesis (SAS), is a subcategory of hypogene speleogenesis, where aggressive water rises from depth. It also produces uncommon minerals, mainly sulfates, the typical byproducts of SAS. Baume Galinière is located in Southern France, in the Vaucluse spring watershed. This small maze cave displays characteristic SAS features such as corrosion notches, calcite geodes, iron crusts, and various sulfate minerals. Sulfur isotopes of SAS byproducts (jarosite and gypsum) clearly show they derive from pyrite oxidation. Using XRD and micro-Raman spectroscopy, thirteen minerals were identified, including elemental sulfur, calcite, quartz, pyrite, goethite, gypsum, and fibroferrite, plus all of the six members of the jarosite subgroup (jarosite, argentojarosite, ammoniojarosite, hydroniumjarosite, natrojarosite, plumbojarosite). The Baume Galinière deposits are the first documented cave occurrence of argentojarosite and the second known occurrence of plumbojarosite, hydronium jarosite, ammoniojarosite, and fibroferrite. In the Vaucluse watershed, there were numerous upwellings of deep water along major faults, located at the contact of the karstic aquifer and the overlying impervious covers. The mixing of deep and meteoric waters at shallow depths caused pyrite depositions in numerous caves, including Baume Galinière. Sulfuric Acid Speleogenesis occurred later after base-level drop, when the cave was under shallow phreatic conditions then in the vadose zone, with oxidation of pyrites generating sulfuric acid. Attenuated oxidation is still occurring through condensation of moisture from incoming air. Baume Galinière Cave records the position of the semi-impervious paleo-cover and documents its retreat in relationship to valley incision caused by uplift and tilting of the Vaucluse block during the Neogene.


Results 106 to 118 of 118
You probably didn't submit anything to search for