MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_left.php on line 5
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That nested sinkholes is (american.) see uvala.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_right.php on line 7
What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for exchange (Keyword) returned 132 results for the whole karstbase:
Showing 121 to 132 of 132
Marine seismic-reflection data from the southeastern Florida Platform: a case for hypogenic karst, 2013,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Cunningham, Kevin J.

Recent acquisition of twenty marine seismic-reflection profiles suggests a hypogenic karst origin for the Key Biscayne sinkhole located on the seafloor of Miami Terrace at the southeastern part of Florida Platform. Analysis of the seismic-reflection data strongly suggest the submarine sinkhole was produced by dissolution and collapse of Plio(?)-Pleistocene age carbonate strata. A complex fault system that includes compres-sional reverse faults underlies the sinkhole, providing a physical system for the possible exchange of groundwater with the sinkhole. One seismic profile is suggestive of a mas-ter feeder pipe beneath the sinkhole. The feeder pipe is characterized by seismic-reflection configurations that resemble megabreccia and stratal collapse. The sinkhole is located at a depth of about 365 m below sea level. The record of sea-level change dur-ing the Plio(?)-Pleistocene and amount of subsidence of the Florida Platform during this span of time indicates that the sinkhole has always been submerged at a water depth of about 235 m or more. Thus, the near-surface epigenic karst paradigm can be ruled out. Possible hypogenic models for sinkhole formation include ascending fluids along the fault system, such as, dissolution related to the freshwater/saltwater mixing at a regional groundwater discharge site, or processes related to gases derived from gener-ation of hydrocarbons within deep Mesozoic strata. Hydrocarbon-related karstification provides several possible scenarios: (1) oxidation of deep oil-field derived hydrogen sulfide at or near the seafloor to form sulfuric acid, (2) reduction of Cretaceous or Paleocene anhydrite or both by oil-field methane to form hydrogen sulfide and later oxidation to form sulfuric acid, and (3) carbon-dioxide charged groundwater reacting to form carbonic acid. Further, anerobic microbes could form methane outside of a hy-drocarbon reservoir that ascends through anhydrite to form hydrogen sulfide and later oxidized to sulfuric acid.


Hydraulic boundary conditions as a controlling factor of water exchanges between a saturated karstic conduit and its surrounding rock, 2013,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Binet Stphane, Joigneaux Emmanuelle, Albric Patrick, Pauwels Helene, Bruand Ary

Rapidcreekite in the sulfuric acid weathering environment of Diana Cave, Romania, 2013,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Onac B. P. Effenberger H. S. Wynn J. G. Povară, I.

The Diana Cave in SW Romania develops along a fault line and hosts a spring of hot (Tavg = 51 °C), sulfate-rich, sodium-calcium-chloride bearing water of near-neutral pH. Abundant steam and H2S rises from the thermal water to condensate on the walls and ceiling of the cave. The sulfuric acid produced by H2S oxidation/hydrolysis causes a strong acid-sulfate weathering of the cave bedrock generating a sulfate-dominated mineral assemblage that includes rapidcreekite, Ca2(SO4)(CO3)•4H2O closely associated with gypsum and halotrichite group minerals. Rapidcreekite forms bundles of colorless tabular orthorhombic crystals elongated along [001] and reaching up to 1.5 mm in length. For verifying the hydrogen bond scheme and obtaining crystal-chemical details of the carbonate group a single-crystal structure refinement of rapidcreekite was performed. Its unit-cell parameters are: a = 15.524(2), b = 19.218(3), c = 6.161(1) Å; V = 1838.1(5) Å3, Z = 8, space group Pcnb. Chemi¬cal composition (wt%): CaO 35.65, SO3 24.97, CO2 13.7, H2O 23.9, Na2O 0.291, MgO 0.173, Al2O3 0.07, total 98.75%. The empirical formula, based on 7 non-water O atoms pfu, is: Ca1.98Na0.029Mg0.013 Al0.004(S0.971 O4)(C0.97O3)•4.13H2O. The d34S and d18O values of rapidcreekite and other cave sulfates range from 18 to 19.5‰ CDT and from –9.7 to 7.8‰ SMOW, respectively, indicating that the source of sulfur is a marine evaporite and that during hydration of the minerals it has been an abundant 18O exchange with percolating water but almost no oxygen is derived from O2(aq). This is the first descrip¬tion of rapidcreekite from a cave environment and one of the very few natural occurrences worldwide. We also report on the mineral stability and solubility, parameters considered critical to understand the co-precipitation of carbonates and sulfates, a process that has wide applications in cement industry and scaling prevention.


Karst rivers particularity: an example from Dinaric karst (Croatia/Bosnia and Herzegovina), 2013,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Bonacci O. , Zeljkovic I. , Galic A.

The very complex system of sinking, losing and underground transboundary Karst rivers, lakes and aquifers in the central part of the deep and bare Dinaric karst in Croatia and Bosnia and Herzegovina is analysed. The groundwater and surface water are hydraulically connected through numerous karst forms which facilitate the exchange of water between the surface and subsurface. A complex underground conduit system is an inherent characteristic karst system analysed. Groundwater and surface water exchange with both adjacent and distant aquifers through underground routes or inflows from surface streams and artificial reservoirs. Because of a complex surface and underground karst features, which strongly influenced its hydrological and hydrogeological regime, the main open stream flow, with a longitude of about 106 km, undergoes eight name changes. In this paper, it is noted as ‘‘the eight-name river’’. In fact, it represents one river with losing, sinking and underground stream sections. Different surface and underground karst forms play crucial roles in the way the water flowing over the surface and on the underground sections of its catchment. The analysed area is full of varied and often spectacular surface landforms, including for example the Blue and Red Lakes and the Kravice Waterfall. The analyses made in the paper show the existence of a decreasing trend of mean annual discharges on the eight-name river, which can cause numerous problems in the regional water resource management of this transboundary river and catchment.


Karst rivers particularity: an example from Dinaric karst (Croatia/Bosnia and Herzegovina), 2013,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Bonacci Ognjen, Ž, Eljković, Ivana, Galić, Amira

The very complex system of sinking, losing and underground transboundary Karst rivers, lakes and aquifers in the central part of the deep and bare Dinaric karst in Croatia and Bosnia and Herzegovina is analysed. The groundwater and surface water are hydraulically connected through numerous karst forms which facilitate the exchange of water between the surface and subsurface. A complex underground conduit system is an inherent characteristic karst system analysed. Groundwater and surface water exchange with both adjacent and distant aquifers through underground routes or inflows from surface streams and artificial reservoirs. Because of a complex surface and underground karst features, which strongly influenced its hydrological and hydrogeological regime, the main open stream flow, with a longitude of about 106 km, undergoes eight name changes. In this paper, it is noted as ‘‘the eight-name river’’. In fact, it represents one river with losing, sinking and underground stream sections. Different surface and underground karst forms play crucial roles in the way the water flowing over the surface and on the underground sections of its catchment. The analysed area is full of varied and often spectacular surface landforms, including for example the Blue and Red Lakes and the Kravice Waterfall. The analyses made in the paper show the existence of a decreasing trend of mean annual discharges on the eight-name river, which can cause numerous problems in the regional water resource management of this transboundary river and catchment.


Detritus processing in lentic cave habitats in the neotropics, 2013,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Marconi Souza Silva, Rafaelly Karina Sales Rezende, Rodrigo Lopes Ferreira

Lentic cave habitatsare almost always heterotrophic habitats where there are food and oxygen input from the surface. This hydrological exchange seems to be the key factor shaping most groundwater communities. Litter processing in cave water environments has not been experimentally studied as much as it has in lotic subterranean systems, although detritus is likely a critical resource for organisms inhabiting shallow groundwater habitats. The present study sought to evaluate the processing rates and the nitrogen and phosphorous dynamics in plant debris deposited in lentic habitats of two Neotropical limestone caves during 99 days. 84–10×10 cm2 litterbags with mesh sizes of 0.04 mm2 and 9 mm2 were used. In each weighed litter bag, 50 green, intact plant leaf disks (± 2.0 gr/bag) were conditioned. At the end of the experiment, the average weight loss was only 17.4%. No macroinvertebrates were found associated to the debris, but significant differences in the processing rate in relation to the cave and mesh size were observed. The weight loss rate of the plant debris was considered slow (average 0.003 K-day). The amount of nitrogen and remaining phosphorous in the plant debris in the two caves showed variations over time with a tendency to increase probably due to the development of microorganisms which assimilate nitrogen and phosphorus. The slow processing rate of the plant debris can be due mainly to the fact that these lentic cave habitats are restrictive to colonization by shredder invertebrates. Furthermore, the abrasive force of the water, which plays an important role in the processing and availability of fragmented debris for colonization by microorganisms, is absent.


Fingerprinting water-rock interaction in hypogene speleogenesis: potential and limitations of isotopic depth-profiling, 2014,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Spötl Ch, Dublyansky Y.

Dissolution processes in karst regions commonly involve (meteoric) water whose stable isotopic (O, H, C) composition is distinctly different from that of the paleowaters from which the host rock (limestone, dolostone) formed. This, in theory, should lead to isotopic alteration of the host rock beyond the active solution surface as the modern karst water is out of isotopic equilibrium with the carbonate rock. No such alteration has been reported, however, in epigenetic karst systems. In contrast, isotopic alteration, commonly referred to as isotopic halos or fronts, are known from various hypogene systems (ore deposits, active hydro­thermal systems, etc.). These empirical observations suggest that stable isotope data may be a diagnostic tool to identify hypogene water-rock interactions particularly in cave systems whose origin is ambiguous.

We have been testing the applicability of this assumption to karst settings by studying the isotopic composition of carbonate host rocks in a variety of caves showing clear-cut hypogene morphologies. Cores drilled into the walls of cave chambers and galleries were stud­ied petrographically and the C and O isotope composition was analyzed along these cores, which typically reached a depth of 0.5 to 1.2 m. We identified three scenarios: (a) no isotopic alteration, (b) a sigmoidal isotope front within a few centimeters of the cave wall, and (c) pervasive isotope alteration throughout the entire core length. Type (a) was found in caves where the rate of cave wall retreat apparently outpaced the rate of isotopic alteration of the wall rock (which is typical, for example, for sulfuric acid speleogenesis). Type (c) was observed in geologically young, porous limestone showing evidence of alteration zones up to 5 m wide. The intermediate type (b) was identified in hypogene karst cavities developed in tight limestone, dolostone and marble.

Our data in conjunction with evidence from speleothems and their geochemical and fluid-inclusion composition suggest that the spa­tial extent of the isotopic alteration front depends on the porosity and permeability, as well as on the saturation state of the water. Wider alteration zones primarily reflect a higher permeability. Shifts are most distinct for oxygen isotopes and less so for carbon, whereby the amplitude depends on a number of variables, including the isotopic composition of unaltered host rock, the isotopic composition of the paleofluid, the temperature, the water/rock ratio, the surface of water-rock contact, the permeability of the rock, and the time available for isotope exchange. If the other parameters can be reasonably constrained, then semi-quantitative temperature estimates of the paleowater can be obtained assuming isotopic equilibrium conditions.

If preserved (scenarios b and c), alteration fronts are a strong evidence of hypogene speleogenesis, and, in conjunction with hypogene precipitates, allow to fingerprint the isotopic and physical parameters of the altering paleofluid. The reverse conclusion is not valid, however; i.e. the lack of evidence of isotopic alteration of the cave wall rock cannot be used to rule out hypogene paleo-water-rock interaction.


Vadose CO2 gas drives dissolution at water tables in eogenetic karst aquifers more than mixing dissolution, 2014,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Gulley J. , Martin J. , Moore P.

Most models of cave formation in limestone that remains near its depositional environment and has not been deeply buried (i.e. eogenetic limestone) invoke dissolution from mixing of waters that have different ionic strengths or have equilibrated with calcite at different pCO2 values. In eogenetic karst aquifers lacking saline water, mixing of vadose and phreatic waters is thought to form caves. We show here calcite dissolution in a cave in eogenetic limestone occurred due to increases in vadose CO2 gas concentrations and subsequent dissolution of CO2 into groundwater, not by mixing dissolution. We collected high-resolution time series measurements (1 year) of specific conductivity (SpC), temperature, meteorological data, and synoptic water chemical composition from a water table cave in central Florida (Briar Cave).We found SpC, pCO2 and calcite undersaturation increased through late summer, when Briar Cave experienced little ventilation by outside air, and decreased through winter, when increased ventilation lowered cave CO2(g) concentrations.We hypothesize dissolution occurred when water flowed from aquifer regions with low pCO2 into the cave, which had elevated pCO2. Elevated pCO2 would be promoted by fractures connecting the soil to the water table. Simple geochemical models demonstrate that changes in pCO2 of less than 1% along flow paths are an order of magnitude more efficient at dissolving limestone thanmixing of vadose and phreatic water.We conclude that spatially or temporally variable vadose CO2(g) concentrations are responsible for cave formation becausemixing is too slow to generate observed cave sizes in the time available for formation. While this study emphasized dissolution, gas exchange between the atmosphere and karst aquifer vadose zones that is facilitated by conduits likely exerts important controls on other geochemical processes in limestone critical zones by transporting oxygen deep into vadose zones, creating redox boundaries that would not exist in the absence of caves.


Identification of the Exchange Coefficient from Indirect Data for a Coupled Continuum Pipe-Flow Model, 2014,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Wu X. , Kugler Ph. , Lu Sh.

Calibration and identification of the exchange effect between the karst aquifers and the underlying conduit network are important issues in order to gain a better understanding of these hydraulic systems. Based on a coupled continuum pipe-flow (CCPF for short) model describing flows in karst aquifers, this paper is devoted to the identification of an exchange rate function, which models the hydraulic interaction between the fissured volume (matrix) and the conduit, from the Neumann boundary data, i.e., matrix/conduit seepage velocity. The authors formulate this parameter identification problem as a nonlinear operator equation and prove the compactness of the forward mapping. The stable approximate solution is obtained by two classic iterative regularization methods, namely, the Landweber iteration and Levenberg-Marquardt method. Numerical examples on noisefree and noisy data shed light on the appropriateness of the proposed approaches


Groundwater geochemistry observations in littoral caves of Mallorca (western Mediterranean): implications for deposition of phreatic overgrowths on speleothems., 2014,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Boop L. M. , Onac B. P. , Wynn J. G. , Fornós J. J. , Rodríguezhomar M. , Merino A.

Phreatic overgrowths on speleothems (POS) precipitate at the air-water interface in the littoral caves of Mallorca, Spain. Mainly composed of calcite, aragonite POS are also observed in specific locations. To characterize the geochemical environment of the brackish upper water column, water samples and salinity values were collected from water profiles (0-2.9 m) in April 2012 and March 2013 near aragonite POS in Cova des Pas de Vallgornera and calcite POS in Coves del Drac (hereafter, Vallgornera and Drac). Degassing of CO2 from the water was evidenced by the existence of lower dissolved inorganic carbon (DIC) concentration and enriched δ13CDIC values in a thin surface layer (the uppermost 0.4 m), which was observed in both profiles from Drac. This process is facilitated by the efficient exchange of cave air with the atmosphere, creating a CO2 partial pressure (pCO2) disparity between the cave water and air, resulting in the precipitation of calcite POS as CO2 degasses from the water. The degassed upper layer was not observed in either profile from Vallgornera, suggesting that less efficient cave ventilation restricts outgassing of CO2, which also results in accumulation of CO2 in the cave atmosphere. The presence of an existing uncorroded POS horizon, as well as higher concentrations and large amplitude fluctuations of cave air pCO2, may indicate that aragonite POS deposition is currently episodic in Vallgornera. Ion concentration data from monthly water samples collected in each cave between October 2012 and March 2013 indicate higher Mg:Ca, Sr:Ca, Ba:Ca and Sr:Mg ratios in Vallgornera. Salinity alone does not appear to be a viable proxy for ions that may promote aragonite precipitation or inhibit calcite precipitation. Instead, these ions may be contributed by more intense bedrock weathering or deep groundwater flow.


Diatom flora in subterranean ecosystems: a review., 2014,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943

In scarcity of light and primary producers, subterranean ecosystems are generally extremely oligotrophic habitats, receiving poor supplies of degradable organic matter from the surface. Human direct impacts on cave ecosystems mainly derive from intensive tourism and recreational caving, causing important alterations to the whole subterranean environment. In particular, artificial lighting systems in show caves support the growth of autotrophic organisms (the so-called lampenflora), mainly composed of cyanobacteria, diatoms, chlorophytes, mosses and ferns producing exocellular polymeric substances (EPSs) made of polysaccharides, proteins, lipids and nucleic acids. This anionic EPSs matrix mediates to the intercellular communications and participates to the chemical exchanges with the substratum, inducing the adsorption of cations and dissolved organic molecules from the cave formations (speleothems). Coupled with the metabolic activities of heterotrophic microorganisms colonising such layer (biofilm), this phenomenon may lead to the corrosion of the mineral surfaces. In this review, we investigate the formation of biofilms, especially of diatom-dominated ones, as a consequence of artificial lighting and its impacts on speleothems. Whenever light reaches the subterranean habitat (both artificially and naturally) a relative high number of species of diatoms may indeed colonise it. Cave entrances, artificially illuminated walls and speleothems inside the cave are generally the preferred substrates. This review focuses on the diatom flora colonising subterranean habitats, summarizing the information contained in all the scientific papers published from 1900 up to date. In this review we provide a complete checklist of the diatom taxa recorded in subterranean habitats, including a total of 363 taxa, belonging to 82 genera. The most frequent and abundant species recorded in caves and other low light subterranean habitats are generally aerophilic and cosmopolitan. These are, in order of frequency: Hantzschia amphioxys, Diadesmis contenta, Orthoseira roeseana, Luticola nivalis, Pinnularia borealis, Diadesmis biceps and Luticola mutica. Due to the peculiarity of the subterranean habitats, the record of rare or new species is relatively common. The most important environmental factors driving species composition and morphological modifications observed in subterranean populations are analysed throughout the text and tables. In addition, suggestions to prevent and remove the corrosive biofilms in view of an environmentally sustainable cave management are discussed.


Thermal damping and retardation in karst conduits, 2015,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Luhmann A. J. , Covington M. D. , Myre J. M. , Perne M. , Jones S. W. , Alexander Jr. E. C. , Saar M. O

Water temperature is a non-conservative tracer in the environment. Variations in recharge temperature are damped and retarded as water moves through an aquifer due to heat exchange between water and rock. However,within karst aquifers, seasonal and short-term fluctuations in recharge temperature are often transmitted over long distances before they are fully damped. Using analytical solutions and numerical simulations, we develop relationshipsthat describe the effect of flow path properties, flow-through time, recharge characteristics, and water and rock physical properties on the damping and retardation of thermal peaks/troughs in karst conduits. Using these relationships, one can estimate the thermal retardation and damping that would occur under given conditions with a given conduit geometry. Ultimately, these relationships can be used with thermal damping and retardation field data to estimate parameters such as conduit diameter. We also examine sets of numerical simulations where we relax some of the assumptions used to develop these relationships, testing the effects of variable diameter, variable velocity, open channels, and recharge shape on thermal damping and retardation to provide some constraints on uncertainty. Finally, we discuss a multitracer experiment that provides some field confirmation of our relationships. High temporal resolution water temperature data are required to obtain sufficient constraints on the magnitude and timing of thermal peaks and troughs in order to take full advantage of water temperature as a tracer.

 


Results 121 to 132 of 132
You probably didn't submit anything to search for