MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Speleogenesis issues:

Featured article from geoscience journal

Geomorphology, 2011, Vol 134, Issue 1, p. 9-22
Distinction between epigenic and hypogenic maze caves

Certain caves formed by dissolution of bedrock have maze patterns composed of closed loops in which many intersecting fractures or pores have enlarged simultaneously. Their origin can be epigenic (by shallow circulation of meteoric groundwater) or hypogenic (by rising groundwater or production of deep-seated solutional aggressiveness). Epigenic mazes form by diffuse infiltration through a permeable insoluble caprock or by floodwater supplied by sinking streams. Most hypogenic caves involve deep sources of aggressiveness. Transverse hypogenic cave origin is a recently proposed concept in which groundwater of mainly meteoric origin rises across strata in the distal portions of large flow systems, to form mazes in soluble rock sandwiched between permeable but insoluble strata. The distinction between maze types is debated and is usually based on examination of diagnostic cave features and relation of caves to their regional setting. In this paper, the principles of mass transfer are applied to clarify the limits of each model, to show how cave origin is related to groundwater discharge, dissolution rate, and time. The results show that diffuse infiltration and floodwater can each form maze caves at geologically feasible rates (typically within 500 ka). Transverse hypogenic mazes in limestone, to enlarge significantly within 1 Ma, require an unusually high permeability of the non-carbonate beds (generally ≥ 10−4 cm/s), large discharge, and calcite saturation no greater than 90%, which is rare in deep diffuse flow in sedimentary rocks. Deep sources of aggressiveness are usually required. The origin of caves by transverse hypogenic flow is much more favorable in evaporite rocks than in carbonate rocks.